22C:253 Lecture 1

Scribe: Narendra B. Devta Prasanna

August 28, 2002

A decision problem is a problem II such that every instance I of IT has a “yes/no” solution. An
algorithm A that solves II produces a correct “yes/no” answer for each instance I of II.

Every instance I of an optimization problem 11 has a non-empty feasible set of solutions, denoted
F1i(I) such that associated with every feasible solution, s € Fiy(I), there is a non-negative rational
cost, denoted Cp(1,s). Any feasible solution that optimizes Cri(Z, s) is called an optimal solution
for I, denoted OPTy(I). An optimization problem IT can either be a maximization problem or a
minimization problem and depending on this OPTy([) is a feasible solution that either maximizes
cost or minimizes cost.

Typically, the following problems related to II have polynomial time solutions:
e Determining if a given instance I is a legal instance of II.

e Checking if a given solution s is feasible for a given instance I (that is, determining if s €
Fr(I)).

e Given I and a feasible soltion s, determining the cost Cr(Z, s).

So all of these problems are easy and the hardness of II arises from the fact that Fi(I) is very
large and there is no known efficient way of searching Fp(I) to find an optimal feasible solution.
Specifically, the optimization problems we will consider will be all be NP-hard. What does it mean
for an optimization problem to be NP-hard?

We can view an optimization problem II as a decision problem by attaching to each problem
instance I a rational B. So each instance of the decision version of II is a pair (I,B). IfII is a
maximization problem, then its decision version asks: Does I have a feasible solution s with cost
Cu(I,s) > B? If II is a minimization problem, then its decision version asks: Does I have a
feasible solution s with cost C(I,s) < B?. Given this, the following propositions are obvious.

Proposition 1 If an optimization problem 11 can be solved in polynomial time, then its decision
version can also be solved in polynomial time.

Proposition 2 If the decision version of an optimization problem Il is NP-hard, then 11 is also
NP-hard.

So whenever we talk about an optimization problem being NP-hard, we are actually talking about
its decision version being NP-hard.

An algorithm A is a factor-f approzimation algorithm for a minimization problem IT if

e A runs in poly-time, and
e For every instance I of II, A finds a feasible solution s such that

Cu(l,s) < f - OPTy(I). (1)

Note that f > 1. If IT is a maximization problem, then A is a factor-f approzimation algorithm if
A runs in polynomial-time and for every instance I of II, finds a feasible solution s such that

Cu(l,s) > f - OPTr(I). (2)

Note here that f < 1.

We will now discuss easy approximationm algorithms for some well-known problems. The table
below shows the problems we will consider and the approximation factor f that the algorithms we
present will achieve. Roughly speaking, these are the best known approximation factors for each
of these problems.

Problem, II Factor f
Graph Coloring O(n¢) for e < 1
Set Cover O(lgn)
Cardinality Vertex Cover 2
Minimum Makespan (1+¢)
Knapsack (1+¢)

The approximation factor (1 + €) for Minimum Makespan and Knapsack problems, means that
for every € > 0, there is an algorithm A, such that A, produces a solution that is within (1 + €)
times the optimal. So technically speaking, here we have a family of algorithms rather than a single
algorithm. This family of algorithms is called a polynomial time approzimation scheme (PTAS).
The running time of a PTAS depends inversely on ¢ and we distinguish the case when the running
time of a PTAS is a polynomial function of 1/e. A PTAS for which this is the case is called a fully
polynomial time approzimation scheme (FPTAS). A PTAS and an FPTAS will be defined more
precisely later. We will present an FPTAS for Knapsack and a PTAS for Minimum Makespan.

Example of Approximation algorithm. A wvertez cover for a graph G = (V, E) is a subset
V! C V such that for every edge {u,v} € E, either u € V' or v € V' (or both). If G is a vertex-
weighted graph with weight function w : V' — QT then the weight of a vertex cover is simply the
sum of the weights of the vertices in it.

Vertex Cover (VC)

Input: A vertex-weighted graph G = (V, E) with weight function w: V — Q.

Output: A vertex cover of G with minimum weight.

In the “cardinality” version of the problem, called Cardinality Vertex Cover (CVC), vertices
have unit weights. This essentially means that we are looking for a vertex cover with fewest vertices
in it.

We want to come up with an algorithm A such that for every instance I of CVC, A produces
a vertex cover s such that

Cevel(l,s) <2-OPTeyve(I) (3)

The problem with showing such an inequality is that we don’t know anything about OPT¢cv ¢ (I).
This is the fundamental problem faced by people designing approximation algorithms Typically,
to get around this problem, we first show a lower bound LBy (I) on OPTy(I). That is,

LBu(I) < OPTu(I) forall I (4)

and then show that
Cu(l,s) <2-LBu(I) <2-OPTn(I) (5)

It turns out that it is extremely easy to obtain a lower bound on OPT¢y o (I).

A matching M in a graph is a set of edges, no two of which share an endpoint. A mazimal
matching is a matching that is maximal with respect to inclusion, that is, adding any other edge
to the maximal matching makes it not a matching.

Algorithm for CVC
1. Compute a maximal matching M of G.

2. Output the endpoints of the edges in M.

Lemma 3 The above algorithm produces a vertex cover of G.

Proof: Let V' be the set of endpoints of the edges in M. If V' is not a vertex cover, then there
is an edge {u,v} € E such that u ¢ V' and v ¢ V'. Hence, {u,v} can be added to M and it
would still be matching. This contradicts the fact that M is a maximal matching. Therefore V' is
a vertex cover. O

Lemma 4 For any matching M of G and any vertex cover V' of G, |[M| < |V'|.

Proof: For every edge in M, there is at least one of its end points in V'. Since M contains edges
no two of which share an endpoint, |[M| < [V’|. O

A corollary of the above lemma, is that if OPT is the size of a minimum cardinality vertex
cover of G and M is a maximal matching, |M| < OPT If we let V' denote the output of the
above algorithm, we have that |V'| = 2 - | M| therefore |V'| < 2- OPT. This shows that the above
algorithm is a factor-2 approximation algorithm for CVC.

Remarks:

e Rather than use OPT1(I) we will use OPT when II and I are clear from the context. In
fact, we will use OPT to denote not only the optimal cost, but also the optimal solution
sometimes.

e A factor-2 approximation can also be achieved for the usual (weighted) vertex cover problem.

