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1 Introduction

For any positive integer n, a partition of n is a non-increasing sequence of positive integers
P1,P2,---,Pn that add up to n. Each p; is called a part of the partition. We will use p(n) to
denote the number of partitions of n. The following example shows all partitions of 6. These
are generated using the Combinatorica function Partitions.

In[1]:= Partitions[6] // ColumnForm

Out[1]= {6}
{5, 1}
{4, 23}
{4, 1, 1}
{3, 3%
{3, 2, 1}

{3, 1, 1, 1}

{2, 2, 2}

{2, 2, 1, 1}

{2, 1, 1, 1, 1}

{1, 1

Combinatorica also provides a function called NumberOfPartitions that computes p(n). In the
following example, p(n) is shown for n = 1,2,...,30. How rapidly does p(n) grow? What is its
asymptotic behavior? The answer to these questions is one the most celebrated outcomes of the
collaboration between Hardy and Ramanujan.

In[2]:= Table[NumberOfPartitions[i], {i, 30}]
Qut[2]= {1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297,

> 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604}

2 Generating Integer Partitions

Let p(n, k) denote the number of partitions of n whose parts are no larger than k. For certain
values of n and k, p(n, k) is easy to compute. For example, p(n,1) = p(1,k) = 1 for all positive
integers n and k. Also, p(n,2) = [n/2] + 1 because the number of parts that are 2 is any number
in {0,1,2,...,|n/2|}. Also, p(n,k) = p(n,n) for all k& > n. The set of partitions of n whose
largest part is no greater than k can be partitioned into two sets: a set A containing partitions
of n with largest part k and a set B containing partitions of n with largest part at most (k —1).
The size of B is p(n,k — 1). Removing k from each partition in A gives us the set of partitions



of n — k whose largest element is no greater than k. Thus the size of A is p(n — k, k). This leads
to the recurrence
p(na k) = p(na k — 1) +p(n - kak)

for all positive integers n and k, with k£ < n. We can use bases cases p(n,0) = 0 for all integers
n > 1 and p(0,k) = 1 for all integers k¥ > 0. Since p(n) = p(n,n), this recurrence provides a
way of counting the number of partitions of n and also provides an algorithm for generating
partitions. Here is Combinatorica code for Partitions.

Partitions[n_Integer] := Partitions[n,n]
Partitions[n_Integer,_] := {} /; (n<0)
Partitions[0,_] := { {} }
Partitions[n_Integer,1] := { Table[1,{n}] }
Partitions[_,0] := {}

Partitions[n_Integer,maxpart_Integer] :=
Join[
Map[ (Prepend [#,maxpart])&, Partitions[n-maxpart,maxpart]],
Partitions[n,maxpart-1]

3 Generating Functions for Integer Partitions

A generating function is a function G(z) whose form is
G(z)=go+guz+g22° +--- = Zgnz"_
n=0

G(z) or in short G is said to be a generating function for the sequence (go, g1, 92, - - -). Generating
functions provide the most powerful tool for dealing with sequences of numbers. For example,
we can define a generating function P(z) = > >7 p(n)z" for (p(0),p(1),p(2),...) and use this
to derive many identities for integer partitions.

Let us start with a simpler example. Start with the function (1 + 2)™ and rewrite it as

14+2)"=1+2)-(1+2)---(1+2).

For the moment, assume that you don’t know the Binomial Theorem and suppose that (1+2)" =
B(2) = Y oo bn,iz’. Each term b, ;2% is obtained from (1 + z) - (1 + 2)--- (1 + 2) by picking 2
from ¢ brackets and picking 1 from the remaining (n —14) brackets. First, this means that b, ; =0
for any ¢ > n. This also means that the coefficient by, ; of 2% is the number of ways of choosing i

brackets from among n brackets to pick z from. This, as we know very well, is (’Z) Thus

B,(z) = i (?)z’ =(1+2)"

i=0

Another way of saying this is that (1 + 2)™ is the generating function of the binomial sequence

(). (1) (3),--
Let us now move on to the problem we are really interested in: finding a generating function
for the sequence (p(0),p(1),p(2),...). We will now show that

(1+z+zz+...)(1+z2+z4+...)(1+z3+z6+...)... (1)



is a generating function for (p(0),p(1),p(2),...). Note that the i th bracket in the above product
has the form

oo
(42 +27 2% ) =) 2
c=0

As an example, consider how z* can be obtained from the above product. We see that z* can
be obtained by

(i) picking z* from bracket 4 and 1 from every other bracket,

(i) picking 2% from bracket 3, z from bracket 1, and 1 from every other bracket,
(iii) picking z* from bracket 2, and 1 from every other bracket,
(iv) picking 22 from bracket 2, z? from bracket 1, and 1 from every other bracket,

(v) picking z* from bracket 1, and 1 from every other bracket.

So z* can be obtained in 5 ways and therefore the coefficient of 2* in the expansion of (1) is
5. In general, the number of ways of obtaining 2™ is equal to the number of ways of choosing
Zler g2z g3ea | respectively from brackets 1,2,3,...sothat 1-¢; +2-co+3-¢c3 +--- =
n. Interpreting ¢; as the number of copies of i chosen, we see this as the number of ways of
partitioning n.
Thus
A+z4+22+--)Q+2 42"+ )A+2+25+--)- -

is the generating function P(z) = > oo, p(n)z". Rewriting the geometric series (1 + 2% + 2% +
2%+ ...) as 1/(1 — 2%) we get that

Pi) =] (1_172) (2)

i=1
This beautiful result is due to Euler.
Mathematica provides considerable amount of machinery for dealing with generating func-
tions. To start with, here is a example of a function called Series that returns the power series
expansion of a function.

In[3]:= Series[1/(1-z"3), {z, 0, 30}]

3 6 9 12 15 18 21 24 27 30 31
Qut[3]=1+2z +2z +z + z + z + z + z +z +z + z + 0[z]

In the following experiment, we use Series and the Mathematica function Product to verify
that the first 20 terms in the expansion of ]2, 1/(1 — 2*) have the correct coefficients (check
this!).

In[4]:

Product[Series[1/(1 - x~i), {x, 0, 20}1, {i, 20}]

2 3 4 5 6 7 8 9
1+x+2x +3x +65x +7x +11x +15x +22x + 30x +

Out [4]

10 11 12 13 14 15 16
> 42 x + 56 x + 77 x + 101 x + 135 x + 176 x + 231 x +

17 18 19 20 21
> 297 x + 385 x + 490 x + 627 x + 0[x]

So we have a pretty generating function for the number of partitions, how is this useful to
us? In the following examples, I will show you how we can use this generating function to derive
several identities.



Example 1. What is the number of partitions of n that do not contain 1? Let g(n) denote this
quantity and let Q(z) = >..7 ,¢(n)z" denote the generating function for (¢(0),¢(1),¢(2),...).
From the discussion that preceded (2) we see that Q(z) is identical to P(z) except that Q(z)
does not have the first term in the product, that is, the term that contributes copies of 1. So

Q(z) =112,1/(1 - 2%) = (1 — 2) P(2). Now,
(1-2)P(z) = Y p(n)-z"=)Y p(n)-z""
n=0 n=0
= Y pn)-2" =) pn—1)-2"
n=0 n=0

o0

= Y (p(n) —p(n—1))z"

n=0

Note that in the second equation above p(—1) occurs and this is assumed to be 0. This implies
that ¢(n) = p(n) — p(n — 1). In other words, the number of partitions of n which do not contain
1 equals the number of partitions of n minus the number of partitions of (n — 1). Can you come
up with a bijective proof of this?

Example 2. What is the number of partitions of n in which the parts are at most k7 We have
used p(n, k) to denote this quantity and now we let Rx(z) = Y 7 p(n, k)z" be the generating
function for (p(0, k), p(1, k), p(2, k), . ..). From the discussion preceding (2) we know that Ry (z) =
Hle 1/(1 — 2%) because in partitions we are considering there are no parts larger than k. This
implies that Ri_1(2) = (1 — 2F)Rg(2). Equating coefficients of like terms on both sides of
the equation, we get p(n,k — 1) = p(n,k) — p(n — k, k). This is identical to the recurrence
p(n, k) = p(n,k — 1) + p(n — k, k) that we gave bijective proof for earlier.

Example 3. In this example, we will use the generating function P(z) to derive the remarkable
identity

Here o(k) is the sum of the factors of k. Start with P(z) =[], 1/(1 — 2*) and take logarithms

on both sides to get
log(P Z log ( )

Then differentiate both sides with respect to z and move P(z) to the right to get
i—1

23 Zl'fzi). (3)

i=1

—~

Now let us focus on Y 3 (i - 2i71) /(1 — 2%) and simplify it as follows:

i—1

oo . s > -
Z(ZI'Z Z (142 + 22 +z3i+-")zzi'zi_l'§]zji‘

i=1 i=1 =1
Further simplification leads to

oo o« o o
DRI DPCAL L o) S PCEL)
i=1 j=1

i=1 j=1



In this sum, which terms contribute to z*¥? Any term 2%~! with ij — 1 = k contributes i to the
coefficient of z*. In other words, any i that is a factor of k¥ + 1 contributes to coefficient of z*.
Thus the coefficient of z* is o(k + 1). The above sum can therefore be rewritten as

i ok +1)2*

k=0
So the equation (3) can be rewritten as

oo

P'(z) = P(2) - Z ok +1)2*

k=0

Now we need to equate coefficients of like terms on the two sides of the equation. The left hand
side is
o

P'(z) = p(1) +22p(2) + 32°p(3) + -~ = Y _(n+ 1)p(n + 1)2"
n=1
The right hand side is
P(z)-Za(k+1)zk:Zp(ﬁ)ze-Za (k+1)z ZlZa (k+1)p k)] 2"
k=1 £=0 k=0 n=0 Lk=0
Equating the coefficients of 2™ we get
(n+1pn+1)=_ o(k+1)p(n — k).
k=0

This is equivalent to
n—1
=Y o(k+1)p(n— (k+1))
k=0

and this is equivalent to

Example 4. This example shows that the number of partitions with all odd parts is identical
to the number of partitions with distinct parts. In the following example, we select all partitions
of 11 with distinct parts. We see that there are 12 of these.

In[5]:= Select[Partitions[11], Length[Union[#]] == Length[#] &]
Uut[5]= {{11}, {10’ 1}’ {9, 2}, {8’ 3}’ {8’ 2’ 1}’ {7’ 4}’ {7’ 3’ 1}, {6’ 5}’

> {6, 4, 1}’ {6, 3, 2}’ {5, 4, 2}’ {5’ 3’ 2, 1}}

In the following example, we select all partitions of 11 with whose parts are all odd. Again, we
see that there are 12 of these.

In[6]:= Select[Partitions[11], Apply[And, Map[Function[x, 0ddQ[x]], #]1]1 &]
OQut[6]= {{11}, {9, 1, 1}, {7, 3, 1}, {7, 1, 1, 1, 1}, {5, 5, 1}, {5, 3, 3},

> {5’ 3’ 1, 17 1}’ {5’ 1, 17 17 1, 1! 1}, {3’ 3’ 3’ 1, 1}’



> 3,3,1,1,1,1, 1}, {3, 1,1, 1,1, 1,1, 1, 1},

> {1, 1,1, 1,1,1,1,1,1,1, 1}}

This is not a coincidence as the following proof shows.
The generating function for the number of partitions with distinct parts is (1+z)(1+2%)(1+
x3) ---. We rewrite it as
(1-2%) (1-2*) (1 - 29 1 1 1

(1-2) (1-2?) (1-2%) =~ (1-z)(1-2%) (1-2%)

The right hand side of the above equation is the generating function for partitions all of whose
parts are odd. This is a slick proof using generating functions. Can you devise a bijective proof?

4 Euler’s Pentagonal Theorem

About 80 years ago Percy MacMahon computed the values of p(n) for n = 1,2,3,...,200, by
hand. This turned out to be immensely useful for Hardy and Ramanujan who were trying to
check how accurate their formula for approximating p(n) was. In particular, MacMahon found
that p(200) = 3,972,999, 029, 388. This is verified by Combinatorica below.

In[7] := NumberOfPartitions[200]

Out [7]= 3972999029388

MacMahon could have used the recurrence p(n, k) = p(n — k, k) + p(n, k — 1) to calculate p(n,n)
or he could have used the the recurrence p(n) = 1/n)";_, o(k)p(n — k). However, it turns out
that there is a recurrence that provides a much faster way of computing p(n). This is given by
Euler’s Pentagonal Theorem.
Consider the function
|
5

What is the combinatorial significance of this function? In other words, if [];°; (1le7 =

Yoo o a(n)z™, is there some relevant combinatorial interpretation of the sequence (¢(0), ¢(1),¢(2),...)?

To answer this consider the more familiar expression

= 1
H(1+z")'

i=1

As we know by now, this is the generating function for the sequence (pd(0),pd(1),pd(2),...),
where pd(n) is the number of ways of partitioning n into distinct parts. Thus pd(n), the coefficent
of 2™, can be written as 1 + 1+ 1+ --- + 1 where each 1 corresponds to a way of picking
2,202 gt 2% such that n = 4y + iy + -+ + ig. Similarly, ¢(n), the coefficient of 2™ in
[T, 1/(1—2%), can be written as (1+1+4---+1)+(—1—1—---—1), where the +1’s correspond
to ways of picking 2%, 2%2 2% ... 2% such that n = i1 + i2 + --- + i, for even k and the —1’s
correspond to the ways of picking 2%, 22, 2%, ..., 2% such that n = i; + 42 + - -- + 4, for odd k.
Thus the coefficient ¢(n) = pde(n) — pdo(n) where pde(n) is the number of ways of partitioning
n into an even number of distinct parts and pdo(n) is the number of ways of partitioning n into
an odd number of distinct parts.



Euler showed that

1
H — =12 =2+ 2T =2

The sequence of exponents 0,1,2,5,7,12,15,... that corresponds to non-zero terms in the right
hand side above is the well-known sequence of pentagonal numbers. The pentagonal numbers
have the form k(3k + 1)/2 for integers k and the coefficient of the terms z*(3%+1)/2 is 41 if k is
even and is -1 otherwise. Thus Euler’s expansion formula can be rewritten as

o

ﬁ i —lz") = 3 (m)EakER2,

i=1 k=—o00

In the example below I calculate the above product partially, multiplying the first 10 terms. The
resulting polynomial is correct in the coefficients of 2™ for any n, 0 < n < 10 since these terms
will not be affected by any subsequent multiplication. Note that some of the remaining terms
have coefficients that are not in the set {—1,0,1}.

In[8]:= Expand[Product[(1 - z"i), {i, 10}]1]

2 5 7 11 12 13 14 15 18 19
Out[8l=1-z -2 +z +2z + z -z -z -z -2z + z + z +
20 21 22 25 26 27 28 29 30 33
> Z + z + 3 z -z -z -2z -2z -z -z + 3 z +
34 35 36 37 40 41 42 43 44 48 50
> z + z + z + z -2z -z -z -z + z + z + z -

The combinatorial implication of what Euler showed is that

_J0 if n # k(3k +1)/2 for any integer k
pde(n) — pdo(n) = { (=1)* if n = k(3k +1)/2 for some integer k

A more important combinatorial implication of Euler’s Theorem is derived as follows. First, for
convenience let t(n) denote pde(n) — pdo(n).
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For any integer k > 0, the coefficient of £ on the left hand side is 0 while the coefficient on the
right hand side is

> p(@)t(i) = p(n) —p(n —1) = p(n = 2) + p(n = 5) + p(n = 7) + - --
=0

Equating the two coefficients we get

p(n) =pn—1)+pn—2)—pn—->5)—pn—-"7)+---



In other words,

o0

p(n) = S (=1 (p(n — k(3k +1)/2) + pln + k(3k +1)/2)).
k=1

This is an infinite series but only has O(y/n) non-zero terms. Here is the Combinatorica imple-
mentation of the function NumberOfPermutations. This uses the recurrence just derived.

NumberQfPartitionsl[n_Integer] := 0 /; (n < 0)
NumberQfPartitionsl[n_Integer] :=1 /; (n == 0)
NumberOfPartitionsl[n_Integer] := NumberOfPartitionsl[n] =

Module [{m},
Sum[ (-1) " (m+1) NumberOfPartitionsi[n - m (3m-1)/2] +
(-1) " (m+1) NumberOfPartitionsi[n - m (3m+1)/2],
{m, Ceiling[ (1+Sqrt[1.0 + 24n])/6 1, 1, -1}

]

Using this implementation it is easy to do better than Percy MacMahon.

In[9] := NumberOfPartitions[700]

Out [9]= 60378285202834474611028659




