Generating Subsets

September 17, 2001

1 Introduction

The number of subsets of [n] is 2™ because each element in [n] can independently be in or out
of a subset. The number of subsets of [n] with exactly k elements is n!/k!(n — k)!. To convince
yourself of this first compute the number of length k sequences that can be made from the
elements in [n]. There are

n-m=-1)-n-2)---(n—k+1)= ————
(n=1)- (n—2)()=
ways of doing this because the first element in the sequence can be picked in n ways, the next
can be picked in (n — 1) ways and so on. We are interested in subsets, not sequences and each of
the k! permutations of a sequence corresponds to the same subset. This implies that the number

of size-k subsets of [n] is n!/k!(n — k)!. This quantity is denoted by the symbol (Z) and often

called a binomial coefficient because of its role in the binomial theorem. We will read this symbol
as “n choose k” to emphasize its combinatorial origins.

Mathematica has a function called Binomial that returns n choose k. The experiment below
illustrates the binomial theorem which tells us that the coefficient of the monomial z* in the

expansion of (1 + z)" is (Z) for k=0,1,...,n.

In[1]:= Table[Binomiall[10, il, {i, 0, 10}]

Out[1]= {1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1}
In[2]:= Expand[(1+x)~{10}]

2 3 4 5 6 7
Dut[2]={1 + 10 x + 45 x + 120 x + 210 x + 252 x + 210 x + 120 x +

8 9 10
45 x + 10x +x 1}

2 Subsets in Lexicographic Order

If we agree to write a subset [n] in increasing order of its elements, then the lexicographic ordering
of subsets of [n] is well defined. Combinatorica contains a function LexicographicSubsets that
generates subsets in lexicographic order.

In[3]:= LexicographicSubsets[Range[4]]

Out[31= {{}, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3},

> {1, 3, 4}, {1, 4}, {2}, {2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}, {4}}

An easy recursive algorithm for generating the subsets of [n] in lexicographic order is as follows.
Generate the list L of subsets of {2,3,...,n} in lexicographic order. Construct a list L' by
prepending 1 to each subset in L. Append the list L to L' and move the empty set to the first
position. The code for LexicographicSubsets, given below, is a faithful implementation of this
algorithm.

LexicographicSubsets[{}] := { { } 2}

LexicographicSubsets[1_List] :=
Module[{s = LexicographicSubsets[Rest[1]]},
Join[{{}}, Map[Prepend[#, 1[[1]]1] &, s], Rest[s]]
]

Ranking and Unranking. Consider a subset X C {i,i+1,...,n}. We will define a function
Rank(X,i,n) as the rank of X in the lexicographic ordering of subsets of {i,i + 1,...,n}. If
X = 0, Rank(X,i,n) = 0. Otherwise, consider the cases i € X and i ¢ X separately. If
i € X, then Rank(X,i,n) = 1 4+ Rank(X — {i},i+ 1,n). If i ¢ X, then Rank(X,i,n) =
2"~ + Rank(X,i+ 1,n). The base case is when i > n and in this case Rank(X,i,n) = 0. Note
that since we are interested in ranking a subset X C [n], we want to compute Rank(X,1,n).
Combinatorica does not provide functions to rank and unrank subsets in lexicographic order,
but Mathematica code implementing Rank(X,i,n) is given below.

MyRankSubset [x_List, i_Integer, n_Integer] 0/; (i >n)
MyRankSubset[{}, i_Integer, n_Integer] := 0
MyRankSubset [x_List, i_Integer, n_Integer]

If [MemberQ[x, i], 1 + Rank[Complement[x, {i}], i + 1, n],

2°(n - i) + Rank[x, i + 1, n]]

MyRankSubset is tested in the following experiment. The rank of the subset {3,4,5,2,1,11,8,13}
in the list of lexicographically ordered subsets of [14] turns out to be 444 and this is confirmed
by calling LexicographicSubsets[Range[14]] and examining the 445 th element.

In[3]:= MyRankSubset[{3, 4, 5, 2, 1, 11, 8, 13}, 1, 14]
Out[3]= 444
In[4]:= 1 = LexicographicSubsets[Range[14]1] [[445]]

Out [4]= {1, 2, 3, 4, 5, 8, 11, 13}

Given a rank r € {0,1,...,2" ! — 1} we can unrank it to get the corresponding subset
X C {i,i+1,...,n} by essentially reversing the algorithm for rank. If r = 0, then X = . So
suppose that r > 0. From the discussion of how we compute Rank(X,i,n), we see that r is
either 1+ Rank(X',i+1,n) or 2"~ + Rank(X',i+1,n), where X' C {i+1,i+2,...,n}. In the
former case, i € X and Rank(X',i+1,n) € {0,1,...,2""¢ — 1}. In the latter case, i ¢ X and
Rank(X',i+1,n) € {1,2,...,2"% — 1}. This means that if € [2"~%] then i belongs to X and
the rest of the elements in X can be obtained by unranking r—1. Ifr € {271 +1,... 211}
then i does not belong to X and the elements of X can be obtained by unranking r — 27~%. T’ll
leave the implementation of this idea as an exercise for you.

Random Subset. Generating a random subset of [n] is easy. Flip a coin independently for
each element ¢ € [n] to decide if ¢ should belong to the subset. The result is a subset X C [n]
selected with probability 1/2™.

3 Gray Codes

There is an obvious bijection between subsets of [n] and binary n-vectors (that is, elements of
{0,1}™). To each subset X C [n] associate a binary n-vector v = (v1,v2,...,v,) such that i € X
if and only if v; = 1. This implies that generating subsets of [n] is equivalent to generating binary
n-vectors. These binary n-vectors can be generated in many different orders. For example, they
can be generated in lexicographic order or in the increasing order of their decimal equivalents.
But the ordering of these binary vectors that is most well known is the binary reflected Gray
code. This ordering is named after Frank Gray, a researcher at Bell Labs who received a patent
for Gray codes in 1953. The problem he was trying to solve was the following. Suppose you want
to transmit a finite string of bits using an analogue transmission device. You might take the
bit string, compute the decimal equivalent, and transmit a signal of that strength or frequency.
A small error in the signal strength means a small change in the number received. However, a
small change in the number received could mean a huge error in the corresponding bit string.
For example, if 256 is the intended number and 255 is received, that means a difference in 9
bits. Gray solved this problem by finding an ordering on the set of binary n-vectors in which
each binary vector differs from the previous in exactly one bit. Then it is simply a matter of
transmitting the rank of a binary n-vector and then unranking it at the receiver’s end.

To generate binary n-vectors in Gray code order, first generate the list L of binary (n — 1)-
vectors in Gray code order. Let Lo be the list obtained from L by prepending 0 to each vector
in L and let Ly be the list obtained from L by prepending 1 to each vector in L. Append to Lg
the reverse of L; to get the list of binary n-vectors. To see that the resulting list satisfies the
minimum change property, note that within Ly and within L, the left most element is fixed and
our induction hypothesis tells us that the remaining (n—1) bits differ only in 1 position from one
vector to the next. At the boundary between Ly and L, because of reversing L;, all elements
except the first are identical and the first element changes from 0 to 1. The Gray code order
corresponds to listing subsets in an order such that each subset is obtained from the previous by
adding or deleting one element. Combinatorica contains a function GrayCodeSubsets that lists
subsets in Gray code order.

In[5]:= GrayCodeSubsets[4]

out[51= {{}, {4}, {3, 4}, {3}, {2, 3}, {2, 3, 4}, {2, 4}, {2}, {1, 2},

{1, 2, 4}, {1, 2, 3, 4}, {1, 2, 3}, {1, 3}, {1, 3, 4}, {1, 4}, {1}}

The code for GrayCodeSubsets is given below.

GrayCodeSubsets[{ } 1 := { {} }

GrayCodeSubsets[1_List] :=
Module[{s = GrayCodeSubsets[Take[l, Length[1] - 111},
Join[s, Map[Append[#, Last[1]] &, Reverse[s]]]
]

Define the n-dimensional hypercube as a graph H,, = (V,,, E,) with vertex set V,, = {0,1}"
and edge set E, containing edges that connect vertices that differ in exactly one bit. The
4-dimensional hypercube is shown below.

A Hamiltonian path in H,, corresponds to a minimum change ordering on binary n-vectors.
Therefore, the Gray code construction proves that H,, has a Hamiltonian path. In fact, the first
and the last vectors in the Gray code ordering also differ by a single bit and therefore the Gray
code construction proves that H, has a Hamiltonian cycle. Of course, there is no reason to
believe that the Gray code ordering is the only Hamiltonian cycle in the graph. The following
experiment shows that the binary reflected Gray code is just one of 2688 distinct Hamiltonian
cycles. The question: how many distinct Hamiltonian cycles does H, have, is open. No one
knows the number of distinct Hamiltonian cycles in H,,, even asymptotically!

In[6]:= Length[HamiltonianCycle[Hypercube[4], All] 1]

Out [6]= 2688

Ranking and Unranking Gray codes. Given a binary vector v = (v1,va,...,v,), how do
we compute its rank in Gray code order? Suppose that v has rank r. There is a pretty connection
between the binary representation of r and the bits in v that provides the basis for algorithms
for ranking and unranking Gray codes. The connection is expressed by the formula

v; = (bz + bifl) mod 2 (1)

that holds for all i+ = 1,2,...,n, assuming that by = 0. This immediately provides a way of
unranking r to obtain a binary n-vector v. Compute the binary representation (by,bs,...,b,) of
r and then use formula (1) to compute the v;’s. It is also easy to invert the formula to get the
equation

b; = (v; +v;—1 + -+ - +v1) mod 2 (2)

that holds for all ¢ = 1,2,...,n. Using this formula, we can compute the rank of a binary
n-vector in Gray code.

Here is an experiment the shows the above connection between the v;’s and the b;’s. Each
row in the matrix shown below consists of two vectors. The first element in row ¢ is the binary
4-vector v of rank 7 — 1 and the second element is the binary representation b of ¢+ — 1. You can
verify that v; = (b; + b;—1) mod 2 for the vectors v and b in each row.

In[7]:= Transpose[{Map[Table[If [MemberQ[#, i], 1, 01, {i, 4}] &,

GrayCodeSubsets[Range[4]]] ,
Table[IntegerDigits[i, 2, 4], {i, 0, 15}1}] // ColumnForm

out[7]1= {{0, 0, 0, 0}, {0, 0, O, 0O}}
{{o, o, 0, 1}, {0, 0, 0, 1}}
{{o0, o0, 1, 1}, {0, 0, 1, 0}}
{{o, o, 1, 0}, {0, 0, 1, 1}}
{{o, 1, 1, 0}, {0, 1, 0, 0}}
{{o, 1, 1, 1}, {0, 1, 0, 1}}
{{o0, 1, 0, 1}, {0, 1, 1, 0}}
{{o0, 1, 0, 0}, {0, 1, 1, 1}}
{{1, 1, 0, 0}, {1, 0, 0, 0}}
{{1, 1, o, 1}, {1, 0, 0, 1}}
{1, 1, 1, 1}, {1, 0, 1, 0}}
{{1, 1, 1, 0}, {1, 0, 1, 1}}
{{1, o, 1, 0o}, {1, 1, 0, 0}}
{{1, o, 1, 1}, {1, 1, 0, 1}}
{{1, o, 0, 1}, {1, 1, 1, 0}}
{{1, o, 0, 0}, {1, 1, 1, 1}}

How do we prove the connection expressed in formula (1)? For n = 1, the formula is true. We
suppose that the formula is true for some n—1 > 0 and prove it for n. So let v = (vy,vs,-..,v,)
be a binary n-vector of rank r € {0,1,...,2" — 1} and let b = (b1,b2,...,b,) be the binary
representation of r. There are two cases, depending on whether v; = 0 or v; = 1.

(i)

(i)

Suppose that v;y = 0. This implies that v is in the first half of the Gray code, which
in turn implies that r € {0,1,...,2" ! — 1}, which in turn implies that b, = 0. This
means that v; = (by + bp) mod 2 and we only have to verify formula (1) fori = 2,3,...,n.
Now note that the (n — 1)-binary vector (vs,vs,...,v,) has rank r and r has binary
representation (ba, b3, . .., by,). The induction hypothesis tells us that v; = (b;+b;—1) mod 2
fori=2,3,...,n.

Suppose that v; = 1. This implies that v is in the second half of the Gray code, which in
turn implies that r € {2"~!,...,2" — 1}, which in turn implies that b; = 1. This means
that v; = (by +bp) mod 2 and we only have to verify formula (1) for i = 2,3,...,n. Because
the second half of the Gray code is obtained by “reflecting” a copy of the Gray code for
binary (n — 1)-vectors, the binary (n — 1)-vector (bs, b3, . .., by) has rank 2"~! —r. Since r
has representation (by,bs,...,b,), 2°~! —r has representation (1 — by, 1 —b,...,1 — by,).
The induction hypothesis tells us that

v; = ((1 - bz) + (]. — bi—l)) mod 2 = (b, + bz’—l) mod 2

fori=2,3,...,n.

Combinatorica has functions RankGrayCodeSubset and UnrankGrayCodeSubset that imple-
ment formulae (1) and (2). In the experiment below, we compute the millionth subset of [100]
in Gray code order and rank it to get 999999.

In[8] := UnrankGrayCodeSubset[999999, Range[100]]
Out[8]= {81, 85, 86, 87, 91, 92, 95}
In[9] := RankGrayCodeSubset[Range[100], %]

Out[9]= 999999

4 Generating k-subsets

Let us now turn to the question of generating all subsets of [n] of a fixed size k. We will use the
term k-subsets to refer to a subset of size k. Generating k-subsets in lexicographic order is easy.
Implement the recursive algorithm underlying the well-known identity of binomial numbers

(5) = Go1)+ ()
and we are done. The more interesting question is whether k-subsets can be generated in some
minimum change order, similar to the Gray code order we used for subsets. The change that
was allowed in going from one subset to the next in Gray code order was a single insertion or
a single deletion. A single insertion or a single deletion will change the size of a subset and
hence we need to allow a larger change than that in order to go from one k-subset to another

k-subset. This motivates the question: can k-subsets be listed in an order so that in going from
one k-subset to the next we perform exactly one insertion and one deletion?

345

Vs

The above figure shows a graph whose vertices are 3-subsets of [5] and whose edges connect
pairs of 3-subsets that can be obtained from each other by a single insertion followed by a single
deletion. The figure also shows a Hamiltonian cycle in the graph indicating that it is possible to

list 3-subsets of [5] in minimum change order. In the example below, this graph is constructed
for 3-subsets of [6] and tested for Hamiltonicity.

In[10] := HamiltonianQ[
MakeGraph[KSubsets[Range[6], 3],
((Length[Complement [#1, #2]] === 1) &&
(Length[Complement [#2, #1]] === 1)) &

]

Out[10]= True

As these examples indicate, yes it is possible to enumerate k-subsets in minimum change order.
More importantly, there is a simple algorithm to do this. Let Ly, denote the list of k-subsets
of [n] written in minimum change order with the k-subset {1,2, ..., k} being the first and the k-
subset {1,2,...,n—1, k} being the last. Then, L,, ; can be constructed from L,_; j and L,_1 ;1
as follows. Append n to each subset in L,_; 1, reverse this list, and append it to Ly,_1 .
Within each list, Ly,_1,; and Ly_1 ;-1 the minimum change condition is satisfied. The induction
hypothesis tells us that L,_q starts with {1,2,...,k} and ends with {1,2,...,k —1,n — 1}.
After we append n and reverse it, the list Ly_1 ,_1, starts with {1,2,...,k —2,n — 1,n} and
ends with {1,2,...,k — 1,n}. So the two subsets at the boundary between the two lists are
{1,2,...,k—1,n—1} and {1,2,...,k—2,n— 1,n}. The latter can be obtained from the former
by the deletion of £ — 1 and the insertion of n. Combinatorica has a function GrayCodeKSubsets
that implements this function. Here is an example illustrating this function.

In[11]:= GrayCodeKSubsets[6, 3]

outl[111= {{1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {1, 2, 4}, {1, 4, 5}, {2, 4, 5},
> {3, 4, 5}, {1, 3, 5}, {2, 38, 5}, {1, 2, 5}, {1, 5, 6}, {2, 5, 61,

> {3, 5, 6}, {4, 5, 6}, {1, 4, 6}, {2, 4, 6}, {3, 4, 6}, {1, 3, 6},

> {2, 3, 6}, {1, 2, 6}}

