Derangements

September 6, 2001

1 Introduction

An absent minded secretary stuffs letters into pre-addressed envelopes at random. What is the
probability that none of the letters end up where they are supposed to? It turns out that this
probability tends to 1/e as the number of envelopes increases. We will see why, as we study
this special class of permutations called derangements. Studying derangements allows us to
visit many of the important themes of this course. An n-derangement is an n-permutation with
no singleton cycles. In other words, a derangement is a permutation that does not map any
element to itself. The Combinatorica function Derangements generates all n-derangements in
lexicographic order.

In[1] := Derangements [4]

out[11= {{2, 1, 4, 3}, {2, 3, 4, 1}, {2, 4, 1, 3}, {3, 1, 4, 2},
{3, 4, 1, 2}, {3, 4, 2, 1}, {4, 1, 2, 3}, {4, 3, 1, 2}, {4, 3, 2, 1}}

Combinatorica also has a function called Derangement(Q that tests whether a given permutation
is a derangement. The code for this function is given below. The function tests to see if any
element is mapped on to itself by the permutation. If not, it is a derangement.

DerangementQ[p_7Permutation] :=
! (Apply[Or, Map[(# === p[[#]])&, Range[Length[pll] 1)

In[2]:= {DerangementQ[{1, 4, 2, 3}], DerangementQ[{2, 1, 4, 3}]}

Out[2]= {False, True}

2 Number of Derangements

The first question we are interested in is: how many n-derangements are there? Let D,, denote
the number of n-derangements. D; = 0 because the only 1-permutation maps 1 to itself and is
therefore not a derangement. Dy = 1 since (2,1) is the only 2-derangement. We will now show
that for any n > 2

D,=(n—-1)Dp_s+(n—1)Dp_1.

In fact, if we define Dy = 1,the above recurrence holds for n = 2 as well.

To prove the recurrence we partition the set of n-permutations into two sets. One set A4
contains the n-derangements in which n occurs in a 2-cycle and the other set B contains those
in which n occurs in a larger cycle. Now we define a mapping f4 from A to the set of (n — 2)-
derangements as follows. For any permutation p € A, fa(p) = p' where p’ is obtained by deleting

from p the 2-cycle (i,n) containing n and decrementing all elements ¢ + 1,5 +2,...,n — 1. p
is an (n — 2)-permutation and contains no singleton cycles and therefore belongs to the set of
(n — 2)-derangements. The mapping f4 maps exactly (n — 1) elements in A onto each (n — 2)-
derangement. To see this observe that for every (n — 2)-derangement p’, the permutation p
obtained by incrementing elements i,i + 1,...,n — 2 and adding the cycle (¢,n) is mapped onto
p'. The possible values of 7 are 1 through n — 1 yielding (n — 1) distinct p that are mapped onto
p' by fa. Hence the size of the set A is (n — 1)D,,_».

Now define a similar mapping fp from the set B into the set of (n — 1)-derangements as
follows. For any permutation p € B, fg(p) = p’ where p’ is obtained by simply deleting n from
cycle it occurs in. The result is an (n — 1)-permutation with no singleton cycles. The mapping
fB maps exactly (n — 1) elements in B onto each (n — 1)-derangement. To see this observe that
for every (n — 1) derangement p’, the permutation p obtained by inserting n into each of the
(n—1) positions 1,2, ..., (n —1) is mapped onto p'. The size of B is therefore (n —1)D,,_; and
the recurrence follows.

This recurrence can be used to compute the number of derangements, but it turns out that
there are two, more elegant formulae for D,,. The first of these is

-Dn = nDn_l + (—l)n
To derive this start with the equations

D, = (n—-1)D, 1+ (n-1)D,,_» (1)
Doy = n—=2)Dyp_o+(n—2)Dy_3 (2)

To the right hand side of (1) add D,,_1 and subtract the right hand side of (2). This yields
Dn Znanl +Dn72 - (H—Z)Dn,3 (3)

Now write the equation D,,_s = (n —3)Dy—3+ (n — 3)Dy,—4, subtract D,,_» from the right hand
side of (3) and add (n — 3)D,,_3 + (n — 3)D,,_4. This yields

D,=nD,_1—Dyp_3+ (n—3)Dp_4.
It is now easy to guess (and prove by induction) the general case
Dy =nDy 1+ (~1YDyj + (n —) D _j1
for j =1,2,.... Letting j =n — 2 we get
D, =nD,_1+(=1)"2Dy +2D; =nD,_; + (-1)".

Combinatorica has a function NumberOfDerangements that computes the number of n-derangements
for a given n. As the code below shows, it is implemented using the recurrence D,, = nD,_1 +

(-1,

NumberOfDerangements[0] := 1
Number0fDerangements[n_Integer?Positive] := n * NumberOfDerangements[n-1] + (-1)"n

In[3]:= Table[NumberOfDerangements[i], {i, 10}]

Out[3]= {0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961}

However, there is simpler way to compute the number of n-derangements. By repeatedly
expanding the recurrence D, = nD, 1 + (—=1)" we get

' .
D—n+v(w+§PW+m+—GW.

This can be rewritten as

by (G G0, G101,

Recall that

1 2
e 1.2 T
e =1+ 1 + o1 +
and so it follows equation that
. D,
im — =e
n—oo n!
This is proof of the claim we made about the absent minded secretary at the beginning of these
notes. Here is an experiment in which the ratio D, /n! is computed for n = 1,2,...,10. The

value of 1/e to the first 6 decimal places is 0.367879 and so by n = 9 the values of 1/e and D, /n!
match in the first six decimal places.

In[4]:= Table[NumberOfDerangements[i]/i!, {i, 10}] // N
Qut[4]= {0., 0.5, 0.333333, 0.375, 0.366667, 0.368056, 0.367857, 0.367882,
0.367879, 0.367879%}

Does the connection between D,, and e~! help in computing D, ? Yes, says the following exper-
iment. Simply round n!/e and we get D,,.

In[5] := Table[NumberQfDerangements[i] - Round[i!/N[E]], {i, 103}]

Out[5]= {0, 0, 0, O, 0, O, O, O, O, O}
To see that rounding n!/e yields D,, consider the “error”

(- (1
m+ D! T mt2) +‘

!
n!
= _D,
e

n!

< '(n-il—1)+(n-+1-2)!+-”)

1
< (n+1 n+n2+”>

[y

This tells us that for n > 2, [nl/e — D,,| < 1/2 implying that rounding n!/e gives D,,. For n =0
and n = 1 this can be verified separately.

We derived the formula D, = Y 7 ,(—1)*n!/i! from the recurrence D, = nD,_1 + (—=1)7,
which in turn we derived from the recurrence D, = (n — 1)D,—1 + (n — 2)D,_2. A more
direct way of deriving this formula uses the inclusion-exclusion principle. This is an important
technique in combinatorics, useful for counting various combinatorial objects. Let X be a finite
set and let X, Xa,..., X, be subsets of X. For any set I C [n] of indices, let X7 = N;crX;. The
inclusion-exclusion principle states that

x- U x= > nMxg.

i1€[n] IC[n]

This is easy to prove by induction and is left as an exercise for you. To use this to derive a
formula for D, let X be the set of n-permutations and for each i € [n], let X; be the set
of n-permutations in which i appears as a singleton cycle. Clearly, U;c,)X; is the set of n-
permutations which contain at least one singleton cycle. Therefore, X — U;c[,)X; is the set of
n-derangements and D, = |X — Uie[n]XiL The set X7 is the set of n-permutations in which
each element in I appears in a singleton. So elements in I are “fixed” while the other (n — |I|)

elements can be permuted. This implies that | X;| = (n — |I|)!. There are (‘TIL‘) subsets of [n] of
size |I| and therefore

n

S)X =30 (F) -y = Z(—l)"?—:.

IC[n] =0 =0

3 Maximum Change Permutations

What we have learned thus far about derangements proves useful in the solution of the following
enumeration problem.

Can n-permutations be listed in an order in which for any pair p and q of consecutive
permutations, p and ¢ differ in every position.

In other words, we want to list n-permutations in “maximum change order,” that is, in an order
in which going from one permutation to the next requires moving every element.

Just as we did when we wanted to list permutations in minimum change order, let us start by
defining a graph P,, = (V,,, E,,) in which V,, is the set of all n-permutations and E,, contains edges
connecting pairs of permutations that differ in all positions. The question “can n-permutations
be listed in maximum change order?” is therefore equivalent to the question “does P, contain
a Hamiltonian path?” Let us first explore the structure of P, before attempting to tackle the
problem of determining whether it contains a Hamiltonian path. How many neighbors does a
vertex in P, have? The answer is (n!/e)! because a pair of permutations p and ¢ are neighbors
if and only if p~! x ¢ is an n-derangement. Thus for each n-derangement d, p has a neighbor
p x d. This connection between P,, and derangements is used to construct the graph P, in the
Mathematica code below.

P[n_Integer?Positive] :=
MakeGraph[Permutations[n],
Derangement([Permute [InversePermutation[#1], #2]]&,
Type -> Undirected

In the following experiment Pj is constructed and the degrees of the vertices in Py are listed.
Each vertex has 9 neighbors and this is as predicted by Dgs = 9.

In[6]:= Degrees[P[4] 1]

Out[7]={9, 9, 9, 9, 9, 9,9, 9, 9,9, 9,9,9,9,9,9,9,9,9, 9,9, 9, 9, 9

Here is P constructed by calling the function P defined above.

IThe function (-) is being used here to denote “rounding.”

81, 3, 2< 81, 2, 3<

82, 1, 3< \33, 2, 1<

82, 3, 1< 83, 1, 2<

P; is not even connected! It seems like we are done, having answered the question in the
negative. But, it turns out that P; is an exception and we now show that P, is connected for all
n > 3. Showing this is equivalent to showing that for any pair of n-permutations p and ¢, there
is a sequence of derangements d;,ds, ..., d; such that

pxdi XdyX---xdp=q.

We already know that for any m-permutations p and ¢, there is a sequence of transpositions
t1,t2,...,t¢ such that
DXty Xtg X--- Xt =q.

Therefore, if we show that any transposition can be expressed as a product of derangements, we
are done. Now observe that if one transposition can be expressed as a product of derangements,
any transposition can. This allows us to focus on the specific problem of showing that the
transposition ¢t = ((1,2)) can be expressed as a product of derangements. For odd n with n > 5,
let d = ((1,2),(3,4,5,...,n)). Then d* 2 (the product of (n —2) d’s) equals ¢. For even n with
n>6,letd =((1,2),3,n—1,n—3,...,5),(4,n,n —2,...,6)). Then d’ x d"* equals t. This
completes our proof for n > 5. The case of n = 4 can be verified explicitly. Specifically, we note
that
((1,2)) = ((1,3,2,4)) x ((1,4,3,2)) x ((1,4,3,2)).

All permutations in the equation above are written in cycle structure form.

The above proof shows that the diameter of P,, that is the maximum distance between
any pair of vertices in the graph is at most (n — 1)(n — 2). This is because between any two
permutations there is a path of transpositions that is at most (n — 1) edges long. Each edge
corresponding to a transposition can be replaced by a path of derangements of length at most
(n — 2). This leads to a maximum path length of (n — 1)(n — 2). However, this seems to be
a gross overestimate. The following experiment tells us that the diameters of Py and Ps, are
2! Is this a coincidence or can you prove this in general? If true in general, it means that 2
derangements suffice to take any permutation to any other permutation.

In[7]:= g = P[4]; h = P[5]; {Diameter[g], Diameter[h]}

Out[7]= {2, 2}

The following experiment shows that Py is not only connected, it has a Hamiltonian cycle as
well.

In[8]:= HamiltonianQ[P[4]]

Out [8]= True

This is not a mere coincidence, and we will be able to appeal to a certain theorem by Jackson
and show that P, is Hamiltonian for all » > 3. One of the simplest sufficient conditions for
Hamiltonicity of a graph was proved by Dirac in 1952. Dirac’s theorem says that any n-vertex
graph with at least 3 vertices, whose minimum vertex degree is at least n/2 is Hamiltonian.
Dirac’s Theorem does not apply to P, because the degree of any vertex in P, (n!/e). This
quantity is greater than n!/3 but smaller than n!/2. Jackson in 1980 proved a stronger sufficient
condition for k-regular graphs. Jackson’s theorem says that any k-regular biconnected graph with
at most 3k vertices is Hamiltonian. In other words, if an n-vertex graph is regular, biconnected,
and every vertex has at least n/3 neighbors, then it is Hamiltonian. P, is regular and every
vertex has at least n!/3 neighbors. The fact that it is biconnected for all n > 3 is not hard to
show and I leave that as an exercise. The conditions plus Jackson’s theorem implies that P, is
Hamiltonian for all n > 3 and from this it follows that n-permutations can be listed in maximum
change order for any n > 3. The interesting thing about this result is that it proves the existence
of a Hamiltonian cycle without providing an algorithm for constructing such a thing. It seems
that no one knows of a simple algorithm to list permutations in maximum change order.

