Selecting, Ranking, and Unranking Permutations

August 28, 2001

1 Introduction

In the lecture on permutations we developed a recurrence from which we concluded that in
generating n-permutations lexicographically we perform roughly 1.54308 swaps per permutation.
In the example below we verify this explicitly for 5-permutations. Each of the 120 5-permutations
is generated and the number of swaps needed to transform each into its successor is calculated.
The mean of these 120 numbers is reported.

In[1]:= Mean[Map[(i=4; While[#[[il] > #[[i+1]],i--]; 1+Floor[(5-i)/21)%,
Permutations[5]
]
1//n

Out[1]= 1.54167

Any attempt to verify this explicitly for n-permutations for much larger n, say n = 100, would
be futile because the number of permutations is so large. However, random sampling provides
a way out. In the example below, 1000 random 100-permutations are generated. For each, the
number of swaps needed to transform it into its successor is calculated, and the mean of these is
reported. So instead of performing the calculation for 100! permutations, we do it for a random
sample of 1000 permutations. The result varies from run to run but stays fairly close to 1.54308.

In[2]:= Mean[Table[p= RandomPermutation[100];i = 99;
While[p[[i]l]l > p[[i+1]1],i--];
1+Floor [(100-1) /2],
{1000}
]
1//N

Out[2]= 1.537

The success of the above experiment depends on being able to select a random permutation from
among 100! permutations uniformly. In other words, the experiment works because each permu-
tation is selected with probability 1/100!. Random sampling is, in general, of crucial importance
in performing experiments on many of the large combinatorial families we will encounter. In the
next section we study how to select a permutation uniformly, at random.

2 Random Permutations

Selecting a permutation at random turns out be a fairly simple task. However, for several of
the combinatorial objects we will encounter later, selecting uniformly at random will turn out to
be a somewhat more difficult and subtle. The fastest algorithm for random permutations starts

with an arbitrary n-permutation and exchanges the ith element with a randomly selected one
from the first 7 elements, for each i from n to 1. The nth element is therefore equally likely to be
anything from 1 to n, The (n — 1)th element is equally likely to be any element not already in
the the nth slot. It follows by induction that any permutation is equally likely and is produced
with probability 1/n!. Since the algorithm consists of n — 1 iterations, each iteration taking ©(1)
time, this is an ©(n) algorithm and is thus optimal. The code for RandomPermutation is given
below.

RandomPermutation[n_Integer] :=
Module[{p = Range[n],i,x},
Do [x = Random[Integer,{1,i}];
{p[[ill, plIx11} = {pllx11, p[[ill},
{i,n,2,-1}
1;
p

In the example below, 300 3-permutations are generated and we observe that each of the
six 3-permutations are selected roughly the same number of times. This is evidence that
RandomPermutation indeed picks permutation uniformly at random.

In[3]:= Distribution[Table[RandomPermutation[3],{300}]1]

Out[3]= {58, 32, 55, 48, 57, 50}

3 Ranking Permutations

Given an ordering on the set of all n-permutations, the rank of a permutation denotes the
position of that permutation in the ordered list of all n-permutations. It seems traditional to
start ranking at 0 and so m-permutations get assigned distinct ranks in the range 0 through
n! — 1. Combinatorica provides a function, RankPermutation that computes the rank of a given
permutation in lexicographic order. Combinatorica also provides a function, UnrankPermutation
that is the inverse of RankPermutation. In other words, UnrankPermutation takes an integer
in the range 0 through n!—1 and returns the permutation with that rank in lexicographic order.
In the example below the rank of a 10-permutation is computed. Then UnrankPermutation is
applied to the obtained rank and the original permutation reappears.

In[4] := RankPermutation[{9, 1, 8, 10, 2, 3, 6, 5, 4, T7}]

Out [4]= 2937614

In[5] := UnrankPermutation[%, 10]

Out[5]= {9, 1, 8, 10, 2, 3, 6, 5, 4, 7}

A brute force method to compute the rank of an n-permutation p is: first generate the list of
n-permutations in lexicographic order and then find the position of p in this list. This is of
course misses the point — we want to be able to rank and unrank in time proportional to the
size of each individual combinatorial object, not in time proportional to the size of the entire
family. Specifically, we would like to rank and unrank an n-permutation in time close to ©(n)
opposed to O(n!).

Suppose that p = (p1,p2,...,pn) is an n-permutation whose rank we wish to compute.
Observe that in lexicographic order, we first have a block of (n — 1)! permutations that start
with 1 followed by a block of (n — 1)! permutations that start with 2, and so on. The block of
permutations that start with p; are ranked from (p; — 1)(n — 1)! through p;(n — 1)! — 1. So we
know that p has rank in this range. The exact location of p in this block depends on the rest of
the elements of p. More precisely, let p’ be the (n — 1)-permutation obtained from p by deleting
p1 and decrementing all elements larger than p;. Then, where the rank of p lies in the range of
ranks [(p1 — 1)(n — 1)L..p1(n — 1)! — 1] is completely determined by p’. This is more precisely
expressed recursively as

Rank(p) = (p1 — 1)(n — 1)! + Rank(p'). (1)

We can therefore recurse on p’ to compute the rank of p.

For example, p = (2,3,1,5,4) has rank between 1-4! = 24 and 2 -4! — 1 = 47 by virtue
of its first element. Then 2 is deleted, the rest of the elements are adjusted from (3,1,5,4) to
(2,1,4,3), and rank of (2,1,4, 3) is obtained and this is added to 24 to obtain the rank of p. The
rank of p, by the way, is 31.

The running time of this algorithm is ©@(n2?). The is because after each first element is
deleted, the rest of the elements have to be checked for possible adjustment. This takes a total
of ©(n) time per element deleted. The algorithm terminates when all n elements are deleted
and therefore the total running time of the algorithm is ©(n2?). The code for RankPermutation
is given below. The code is a faithful implementation of the recurrence given in Equation 1 and
the algorithm described above.

RankPermutation[{1}] := O
RankPermutation[{}] := 0

RankPermutation[p_7PermutationQ] := (p[[1]]1-1) (Length[Rest[pl]!) +
RankPermutation[Map[(If[#>p[[1]1], #-1, #1)&, Rest[pl]]

Inversion Vectors. Can we devise a more efficient algorithm for RankPermutation? It turns
out that we can devise a ©(nlogn) algorithm, using the notion of inversion vectors.

A pair of elements p; and p; represent an inversion in a permutation p if i > j and p; < p;.
Inversions are pairs which are out of order, and so they play a prominent role in the analysis of
sorting algorithms. For any integer ¢, 1 <14 < n — 1, the ith element of the inversion vector v of
an n-permutation p is the number of elements in p greater than ¢ to the left of 4.

Combinatorica provides a function called ToInversionVector that computes the inversion
vector of a given permutation. In the example below, the first element of the inversion vector of
(5,9,1,8,2,6,4,7,3) is 2 because there are two elements, namely 5 and 9, that are larger than 1
and appear to its left.

In[6]:= ToInversionVector[{5,9,1,8,2,6,4,7,3}]

Out[6]= {2, 3, 6, 4, 0, 2, 2, 1}

The inversion vector contains only n — 1 elements since there are 0 inversions of the form (i,n),
implying that the nth element of an inversion vector is always 0 and hence need not be explicitly
specified. The ith element can range from 0 to n — i, so there are indeed n! distinct inversion
vectors, one for each permutation.

Now how are inversion vectors related to computing the rank of a permutation? Reconsider
the ©(n?) algorithm described above for computing the rank of a permutation p = (py, p2, - - -, Pn)-

After we have noted the contribution of p; to the rank, we delete it from p and decrement all
other elements in p larger than p;. What if we did not decrement the other elements in each
step? When we get to p;, in order to compute its contribution to the rank of p, we need to de-
termine how many times it would have been decremented, had we been diligently decrementing
after each deletion. The number of times p; would have been decremented is exactly equal to
the number of elements in p smaller than p;, that occur to its left. Let £(7) denote the number
of elements smaller than ¢ that occur to its left in p. Then, had we decremented p;, as in the
original version of the algorithm, its value would be p; — £(p;) and its contribution to the rank
of p would be (p; — £(p;) — 1)(n — i)!. The rank of p is therefore

3 i — tpi) —) (n—).
=1

Now note that if v is the inversion vector of p, (i — 1) —v[p;] = €(p;). Therefore, (p; —£€(p;) — 1) =
(pi + v[pi] — ©) and the above sum can be rewritten as

n

> (i + vlpi] — i) (n =D)L

i=1
This expresses the rank of p in terms of elements in p and the inversion vector of p. Given p and its
inversion vector it takes ©(n) time to compute the above sum. A Mathematica implementation
of this algorithm is given below.

NewRankPermutation[p_7PermutationQ] :=
Module[{n = Length[pl, v = Append[ToInversionVector[p], 0]},
Sum[(p[[il]l - i + v[[p[[il]l 11) (n-i)!, {i, n-1}]
]

Just as a sanity check, in the following example we compare the answers produced by
RankPermutation and NewRankPermutation on 10 randomly chosen 20-permutations.

In[7]:= Table[p = RandomPermutation[20];
RankPermutation[p] == NewRankPermutation[p],
{10}
]

OQut[7]= {True, True, True, True, True, True, True, True, True, True}

The time to compute the rank of an n-permutation p according to the new algorithm is ©(T'(n) +
n) where T'(n) is the time required to compute the inversion vector of an n-permutation. The
algorithm implemented in Combinatorica to compute the inversion vector of a permutation
p = (p1,p2,--.,pn) is the simple ©(n?) algorithm in which for each p;, we scan the (i—1) elements
prior to p; and count the number of elements larger than ¢. The code for ToInversionVector is
given below. Here we first compute the inverse ¢ = (g1, ¢z, .- ., ¢n) of p because for each i € [n],
g; gives the position of 7 in p. So the ith element of the inversion vector of p is computed by
taking the length ¢; prefix of p and finding the number of elements in this prefix that are larger
than p;.

ToInversionVector[p_7PermutationQ] :=
Module[{i, inverse=InversePermutation[pl},

Tablel[
Length[Select[Takelp,inverse[[i]]1], (# > i)&] 1,
{i,Length[p]-1}
]
1 /; (Length[pl > 0)

Computing the rank of an n-permutation using ToInversionVector given above still results
in a ©(n?) algorithm.

We now describe a ©(nlogn) algorithm to compute the inversion vector of an n-permutation.
The algorithm is a simple modification of merge sort. Suppose that we run the merge sort
algorithm with an n-permutation p as input. The algorithm sorts p”, the first half and pf, the
second half of p separately, by calling itself recursively and then merges the two sorted halves. So
the merge step is where all the work takes place. Now suppose that the merge step takes as input,
not just two sorted halves, but two corresponding inversion vectors as well. In particular, assume
that v~ and vF are inversion vectors corresponding to p” and pf. More precisely, suppose that
vl and v are length n — 1 arrays such that the ith element of v’ is 0 if i is not in p’; otherwise
the ith element of v* is the number of elements in p% larger than i that occur to its left. v* is
defined similarly. This means that v* + v® is the inversion vector of p, except that inversions
due to elements in p” larger than elements in p? are not recorded in v’ + v*#. The merge step
can remedy this as follows. For each pair (i,7), i € p¥, j € p®, examined by the merge step, if
i > j then we need to add z to the jth element in v* +v®, where z is the number of elements in
pl including and after i. The justification for this is that ¢ and every element following i in p¥
is an inversion with respect to j and this needs to be noted in the jth element of the inversion
vector.

For example, suppose that p = (8,7,2,1,9,4,6,5,10,3). Then

pf =(8,7,2,1,9),p" = (4,6,5,10,3),vL = (3,2,0,0,0,0,1,0,0), and v® = (0,0,4,0,1,0,0,0,0).

The sequences (1,2,7,8,9) and (3,4, 5,6,10) are sorted versions of p* and p® respectively and
these are passed as input into the merge step along with v” and vf. The merge step examines
the pairs

(1,3),(2,3),(7,3),(7,4),(7,5),(7,6),(7,10), (8,10), (9, 10)

in that order. The pair (7,3) represents an inversion and in fact this points to the existence of
additional inversions (8,3) and (9,3). As a result of this discovery 3 is added to the 3rd element
in v¥ 4+ v®. Similarly, examination of the pairs (7,4), (7,5), and (7,6) causes 3 to be added to
the 4th, 5th, and 6th elements of v* 4+ v®. As a result of these updates v’ + v ends up being:

(3,2,7,3,4,3,1,0,0).

This is the inversion vector of p.

This completes the description of a ©@(nlogn) algorithm for computing the rank of a permu-
tation. Before we move on to the problem of unranking a permutation, let us linger a little on
inversion vectors. We introduced these in the context of computing the rank of a permutation,
but they have other uses as well. First of all, no two permutations have the same inversion vector
and therefore there is a bijection between the set of n-permutations and their inversion vectors.
It is not hard to compute the corresponding permutation given an inversion vector (you should
think about how to do this!) and Combinatorice has a function called FromInversionVector to
do this.

In[8]:= ToInversionVector[{8, 7, 2, 1, 9, 4, 6, 5, 10, 3}]

Out[8]= {3, 2, 7, 3, 4, 3, 1, 0, 0}

In[9]:= FromInversionVector[%]

Out[9]= {8, 7, 2, 1, 9, 4, 6, 5, 10, 3}

Thus inversion vectors form an alternate representation of permutations and this comes in handy
sometimes.

Inversion vectors also provide a measure of the “unsortedness” of permutations. The total
number of inversions of a permutation is simply the sum of the entries in the inversion vector.
Most sorting algorithms sort by swaps and these swaps can be thought of as ways of decreasing
the total number of inversions in the permutation. Algorithms such as bubble sort that perform
adjacent swaps have to swap exactly as many times as the number of inversions because an
adjacent swap decreases the number of inversions by exactly 1. In certain applications, it is useful
to enumerate or randomly select “almost sorted” permutations. This motivates the following
problems.

(i) For any positive integer n and integer k, 0 < k < (g), generate all permutations with

exactly k inversions.

(ii) For any positive integer n and integer k, 0 < k < (g), pick uniformly at random a

permutation with exactly k inversions.

Along with these problems, you should also ponder the question of how many n-permutations
there are with exactly k inversions. These and other issues pertaining to inversion vectors will
be explored in homework problems.

4 Unranking Permutations

As explained in the previous section, the rank of a permutation p = (p1,pa,...,pn) is

> (i — tpi) — 1)(n — i),

i=1

where £(p;) is the number of elements in p smaller that p; occurring to its left. For j =1,2,...,n
let S; denote the partial sum

§j =3 (i = o) = (n = i)l

So S1 = (p1 — 4(p1) — 1)(n — 1)! + S5. As we observed earlier S5 is the rank of an (n — 1)-
permutation and is therefore in the range 0 through n! — 1. Therefore, dividing S; by (n —1)!
yields a quotient (p; — £(p1) — 1) and remainder S;. Repeatedly dividing the partial sums in this
manner, we obtain values ¢;,¢s,. .., ¢, where ¢; = (p; — €(p;) — 1) for each ¢ = 1,2,...,n. It is
now simply a matter of obtaining the p;’s from the ¢;’s. Noting that £(p;) = 0 we immediately
get p1 = ¢1 + 1. In general, having computed the values of p1,p2,...,p;—1, how do we compute
pi? Let R; = [n]—{p1,p2,...,pi—1}. We note that there is exactly one element j € R; for which
Jj—£(j) = ¢; + 1. We pick this element j as p; and we are done.

One way to quickly pick the appropriate j from R; is as follows. Start with Ry as the
sequence (1,2,...,n) and as elements py, pa, - - . are computed, delete them to obtain Ry, Rs,
An element j € R; starts in the jth position in Ry and moves to the left as many times as there
are elements smaller than it in {p1,ps,...,p; 1}. Thus the position of j in R; is j minus the

number of elements smaller than it in {p1,p2,...,pi—1}. Therefore, the element j € R; with
Jj—£(j) = ¢; + 1 is simply the element in position (¢; + 1).

For example, what is the millionth 10-permutation in lexicographic order? Dividing 999999 by
9! yields quotient 2 and remainder 274239. Thus ¢; = 2, p1 = 3 and Ry = (1,2,4,5,6,7,8,9,10).
Dividing 274239 by 8! yields quotient 6 and remainder 32319. So ¢ = 6, p» = 8 and Ry =
(1,3,4,5,6,8,9). This process continues until we have computed all 10 entries of the permutation.

In[10] := UnrankPermutation[999999, 10]

Out[10]= {3, 8, 9, 4, 10, 2, 6, 5, 7, 1}

Given below is the code for UnrankPermutation. UP is a helper function that computes the
values ¢; + 1,c0 + 1,...,¢, + 1. From these values the p;’s are computed in the main body
of the function UnrankPermutation. Computing the ¢;’s takes ©(n) time. The sequence R; is
maintained in the variable s. At each step an element is deleted from s and this takes time
proportional to the size of s. Therefore the running time of the algorithm is ©(n?). You should
think about how to improve this to ©(nlogn).

UP[r_Integer, n_Integer]
Module[{rl = r, q = n!},
Table[rl = Mod[rl, ql; q = q¢/(n - i + 1); Quotient[rl, q] + 1,
{i, n}
]
]

UnrankPermutation[r_Integer, 1_List] :=
Module[{s = 1, k, t, p = UP[Mod[r, Length[1]!], Length[11]},
Table[k = s[[t = p[[i]] 1]; s = Delete[s, tl; k,
{i, Length[p 1}
]

