Young Tableaux

October 31, 2001

1 Introduction

A Young Tableau of shape (ni,na2,...,ny), where ny > ny > ng > --- > n,, > 0 is an arrange-
ment of ny +ny + - - - + ny, distinct positive integers in an array of m left-justified rows, with n;
elements in row ¢, such that integers in each row are increasing from left to right and integers in
each column are increasing from top to bottom. For example,

1 10 12 14 22
11 13 15 20 27

17 21 23
19 28
24

is a Young Tableau of shape (5,5,3,2,1). We will be interested in questions such as: how many
distinct Young tableaux can we make with n elements? how many distinct Young tableaus
are there with a given shape (n1,n2,...,n,)? how can we generate all Young tableaux with
n elements or all Young tableaux of a given shape? how can we generate a random Young
tableau? Answering these questions will lead us to the famous Robinson-Schensted correspon-
dence between permutations and pairs of tableaux and the connection between involutions and
tableaux.

Let us study an example carefully before we proceed further. Suppose we want to generate
all Young tableaux with 4 elements. The possible shapes of Young tableaux with 4 elements are
simply the integers partitions of 4.

In[1]:= Partitions[4]
Out[1]= {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}

Combinatorica contains a function called Tableaux that takes as input a shape and returns all
Young tableaux of that shape. Below we use Tableaux to generate all Young tableux with 4
elements. We see from this example that there is one Young tableaux of shape (4), three of shape
(3,1), two of shape (2,2), three of shape (2,1,1), and one of shape (1,1,1,1). Thus a total of
10 Young tableaux can be made from 4 elements.

In[2]:= Map[Tableaux, Partitions[4]] // ColumnForm
Out[2]= {{{1, 2, 3, 4}}}
{{{1, 3, 43}, {2}}, {{1, 2, 4}, {3}}, {{1, 2, 3}, {4}}}
{{{1, 3}, {2, 43}, {{1, 2}, {3, 4}}}
{{{1, 43, {2}, {3}}, {{1, 3}, {2}, {43}, {{1, 2}, {3}, {431}
{{{1}, {23, {3}, {431}

Combinatorica contains a function called Number0fTableaux that returns the number of Young
tableaux of a given shape.

In[9]:= Map[NumberOfTableaux, Partitions[4]]
Out[9]= {1, 3, 2, 3, 1}

2 Insertion and Deletion

Let P be a Young tableaux and let = be a positive integer not in P. Then z can be inserted
into P and the algorithm to do this is illustrated in the following example. Suppose we want to
insert 2 into the following tableaux:

12
13

2 is inserted into the first row and there it displaces element 3, “bumping” it off to a subsequent

row. This gives us the tableau

1 2
7 8
12
13

and we want to insert 3 into the second row of this tableau. Inserting 3 into row 2 bumps off
the 7 and gives us the tableau

4 6

1 2
3 8
12
13

and we want to insert 7 into row 3. Inserting 7 into row 3 bumps off 12 and we get the tableau

4 6

1
3 8
7

[

3

with 12 waiting to be inserted into row 4. Inserting 12 into row 4 bumps off the 13 and gives

the tableau
4 6

2
8

~N W~

—
N

with 13 waiting to be inserted into row 5. The result of inserting 13 is the tableau

1 2 4 6
3 8
7

12

13

Combinatorica has a function called InsertIntoTableau that uses this “bumping” algorithm to
insert into a tableau.

In[4]:= InsertIntoTableaul2, {{1, 3, 4, 6}, {7, 8}, {12}, {13}}]
Out[4]= {{1, 2, 4, 6}, {3, 8}, {7}, {12}, {13}}

Let P be a tableau and x be a positive integer not in P. We use P;; to denote the element in row
1 and column j. For convenience we assume that the tableau is bordered on the left and on the
top by 0’s and on the bottom and on the right by co. The algorithm for insertion is described
below.

1. Set i « 1 and set z; < x.

2. Find a position j such Pi;_1) < z; < Pj;.

3. Set Tjp1 < Pij, T < j, and H]‘ «— I;.
4. If 2;41 < 0o then increment ¢ and return to Step (2).
5. Set s + i and t + j and terminate the algorithm.

Here is a quick, informal argument to show that the algorithm is correct, that is, it returns a
tableau which contains all the elements in P along with 2. The claim is that after each execution
of Step (3), P is a tableau. It is clear, because of the j that is found in Step (2), that the row
into which z; in inserted continues to be in increasing order. Also, x; replaces a larger element
and so after insertion, z; is smaller than the element below it. We only need to make sure that
z; is larger than the element above it. For ¢ = 1, there is no element above z; and so this is
trivially true. When ¢ > 1, note that z; is an element that previously occupied row (i — 1). In
particular, z; lived in row (i — 1) and column r;_;. Let ¢ = r;_; and we have Pj;_1y—1) < Z;
and z; < P;.. So in row 4, x; will get inserted in or to the left of column ¢. Since everything in
row (¢ — 1) that is in or the left of column c is less than z;, we have that after insertion, z; is
indeed larger than the element above it.
From the proof sketch above it is clear that the “bumping sequence” satisfies

=21 <Ty < < Ty < Ty =0
and the sequence of column indices where the insertions take place satisfies
rL>2Te 2215 =t
Also, (s,t), the position where the last insertion takes place satisfies
Py # o0 and Pisi1)t = Pyp41) = 0. (1)

Given a tableau P and a position (s,t) such that equations in (1) are satisfied, it is possible
to reverse each step of the the insertion operation and get the original tableau back. In the
beginning of this section we presented an example in which we inserted the element 2 into the
tableau

1 3 4 6
7 8

12

13

and obtained the tableau

1 2 4 6
3 8

7

12

13

In this example, the position (s,t) = (5,1) and we can rewind the insertion operation by taking
the element in this position, namely 13, and insert it into the previous row, replacing the largest
element smaller than it. The element 12 that gets dislodged from row 4 then gets inserted into
row 3 dislodging element 3 which in turn gets inserted into row 1 dislodging element 2. At this
point the deletion algorithm stops and we have the original tableau. Combinatorica contains a
function called DeleteFromTableau that is the implementation of the deletion algorithm. The
following example illustrates that InsertIntoTableau and DeleteFromTableau can be thought
of as inverses of each other.

In[3]:
Out [3]

InsertIntoTableaul2, {{1, 3, 4, 6}, {7, 8}, {12}, {13}}]
{{1, 2, 4, 6}, {3, 8}, {7}, {12}, {13}}

In[4] := DeleteFromTableaul[%, 5]
Out[4]1= {{1, 3, 4, 6}, {7, 8}, {12}, {13}}

3 Robinson-Schensted-Knuth Correspondence

Starting with a permutation p = (p1,p2, - - -, pn) We can construct a tableau by inserting elements
P1,P2,---,Pn in that order starting with an empty tableau. There is a Combinatorica function
called ConstructTableau to does this.

In[6]:= ConstructTableaul{3, 1, 5, 2, 4}]
Uut[6]= {'{1’ 2’ 4}, {3, 5}}

This is equivalent to inserting into a tableau repeatedly, as the following example shows.

In[10] := InsertIntoTableaul3, {}]
Out[10]1= {{3}}

In[11] := InsertIntoTableaul1l, %]
Out[11]= {{1}, {3}}

In[12] := InsertIntoTableaul5, %]

Out[12]= {{1, 5}, {3}}
In[13]:= InsertIntoTableaul[2, %]
Out[13]= {{1, 2}, {3, 5}}

In[14] := InsertIntoTableaul4, %]
Out[141= {{1, 2, 4}, {3, 5}}

It is tempting to think that this defines a bijection from n-permutations to tableaux containing
the elements 1,2,...,n. However, this is not the case and many different n-permutations can
map onto the same tableau. The following experiment shows that there are 5 5-permutations
that map on to the tableau {{1,2,4},{3,5}}.

In[19] := Length[Select[Map[ConstructTableau, Permutations[5] 1],
(#=={{1, 2, 4}, {3, 5}})&
]
]
Out[19]= 5

One of these is (3,1,5,2,4). Another is (1, 3,5,2,4), as verified in the following example:

In[20] := ConstructTableaul[{1, 3, 5, 2, 4}]
Out[20]= {{1, 2, 4}, {3, 5}}

Can you find the other 37 One way of finding the permutations that map on to a particular
tableau is to find all sequences of deletions from the tableau that lead to the empty tableau. The
reverse of each of these sequences is a permutation that maps on to the tableau.

The Robinson-Schensted-Knuth correspondence is a series of results, by Robinson in 1930’s,
by Schensted in 1960’s, and by Knuth in 1970 that showed a bijection between n-permutations

and pairs of Young tableaux. The see this bijection write a permutation p = (p1,pa2,...,ps) in
its two line notation as
1 2 3 ... n
p = -
pP1 P2 pP3 .-- DPn

Start with a pair (P, () of empty tableaux and for each ¢ = 1,2,...,n insert p; into P and set
Qst + 1 where (s,t) is the newly filled position in P. To see this construction in action let us
start with the permutation (3,1,5,2,4) again. After 3 and 1 have been processed we have the
pair of tableau

1 1
3 2
After the 5 is processed we have
1 5 1 3
3 2
and after the 2 is processed we have
1 2 1 3
3 5 2 4
and after the 4 is processed we have the final pair
1 2 4 1 3 5
3 5 2 4

So at the end of the process we have a tableau P and a tableau () that informs us of the order
in which insertions were made into P. This allows us to reverse the process unambiguously. In
the above example, the largest element in (), namely 5, is in row 1 and so the first deletion from
P is in row 1 resulting in the deletion of 4. The resulting pair of tableaux is

1 2 1 3
3 5 2 4°

The largest element in (), namely 4, is in row 2 and that tells us that the next deletion from P
is in row 2. We can continue in this manner till (P, ()) become the empty pair of tableaux and
in the process we would have recovered the permutation that we started with.

Unfortunately, Combinatorica does not contain a function that implements the RSK corre-
spondence directly, though it is not hard to implement such a function. First we implement a
function called NewInsertIntoTableau that inserts an element into a tableau and returns a pair
in which the first element is the position of the newly created cell and the second element is
the new tableau. This function is a slight modification of the function InsertIntoTableau that
Combinatorica contains.

NewInsertIntoTableaul[e_Integer, {}] := {{1, 1}, {{e}}}
NewInsertIntoTableaul[e_Integer, t1_7TableauQ] :=
Module[{item = e, row = 0, col, t = t1},
While[row < Length[t],
row+tt;
If[Last[t[[row]]] <= item,
AppendTo[t[[row]], item];
Return[{{row, Length[t[[rowl] 1}, t}]
1
col = Ceiling[BinarySearch[t[[row]], item]];
{item, t[[row, colll} = {t[[row, coll], item};
1;
{{Length[t] + 1, 1}, Append[t, {item}]}]

The following example shows NewInsertIntoTableau in action. The insertion of 10 into
the given tableau creates a new cell in position (2,3) and this position is also returned by the
function.

In[3]:
Out [3]

NewInsertIntoTableaul[10, {{1, 2, 11}, {7, 8}}]
{{2, 3}, {{1, 2, 10}, {7, 8, 11}}}

Using this function it is easy to write a function ConstructTableauxPair that implements the
RSK-correspondence.

ConstructTableauxPair[p_7Permutation] :=
Module[{t, P = {}, Q = Table[Infinity, {Length[pl}, {Length[p]}]1},

Do[t = NewInsertIntoTableaul[p[[i]], P];
P = t[[2]];
QLC tCC1, 111, tCl1, 211 11 = 1,
{i, Length[pl}

1;

{P, Select[Map[Cases[#, _Integer] &, Q1, (# !'= {}) &1}

Here are the 6 tableaux pairs corresponding to the 6 3-permutations.

In[6]:
Out [6]

Map[ConstructTableauxPair, Permutations[3]] // ColumnForm
{{{1, 2, 3}}, {{1, 2, 3}}}

{{{1, 2}, {33}, {{1, 2}, {3}}}

{{{1, 3}, {23}, {{1, 3}, {2}}}

{{{1, 3}, {213}, {{1, 2}, {3}}}

{{{1, 2}, {3}, {{1, 3}, {2}}}

{{{1}, {23}, {33}, {{1}, {2}, {3}}}

In the above example, for 4 of the 6 permutations the corresponding tableaux pair (P, Q) satisfies
P = @. It turns out that the permutations for which this is true are familiar to us. In the
following example, those 4-permutations are selected for which the two corresponding tableaux
are identical. On examining the cycle structure of these permutations we see that they are all
involutions!

In[7]:= Select[Permutations[4], (t = ConstructTableauxPair[#]; t[[1]] == t[[2]1])&]
Out[7]1= {{1, 2, 3, 4}, {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 4, 3, 2},
{2, 1, 3, 4}, {2, 1, 4, 3}, {3, 2, 1, 4}, {3, 4, 1, 2}, {4, 2, 3, 1},
{4, 3, 2, 1}}

In[10] := Map[ToCycles, %] // ColumnForm

Out[10]= {{1}, {2}, {3}, {4}}
{{1}, {2}, {4, 3}}
{{1}, {3, 2}, {4}}
{{1}, {4, 2}, {3}}
{{2, 1}, {3}, {4}}
{{2, 1}, {4, 3}}
{{3, 1}, {2}, {4}}
{{3, 1}, {4, 2}}
{{4, 1}, {2}, {3}}
{{4, 1}, {3, 23}

In fact, we will soon be able to prove that there is a one-to-one correspondence between n-
involutions and tableaux with elements 1,2,...,n.

The stepping stone to this result is a remarkable property of the Robinson-Schensted-Knuth
(RSK) correspondence: a permutation p corresponds to a tableaux pair (P, @) if and only if the
permutation p~! corresponds to the tableaux pair (Q, P). The following example illustrates this
property.

In[11]:
Out[11]

ConstructTableauxPair[p = RandomPermutation[10]]
{{{1, 3, 5, 10}, {2, 4, 6}, {7, 9}, {8}},
{{1, 38, 4, 5}, {2, 7, 10}, {6, 9}, {8}}}

In[12] := ConstructTableauxPair[InversePermutation[p]]
out[12]= {{{1, 3, 4, 5}, {2, 7, 10}, {6, 9}, {8}},
{{1, 3, 5, 10}, {2, 4, 6}, {7, 9}, {8}}}

We need to make a couple of remarks in preparation for proving this remarkable property.

e The RSK-correspondence can be slightly generalized to two line arrays

@i q2 g3 ... Gn

b1 p2 p3 --- Pn
where 1 < ¢2 < --- < qn and the p;’s are distinct. These correspond to tableaux
pairs (P,Q) where P contains the elements {pi,ps,...,pn}, @ contains the elements

{¢1,%2,---,4qn}, and P and @ have identical shape.

e The construction of a tableaux pair (P, Q) from a two line array by repeated insertion can
be viewed as constructing the first rows of P and () and then recursively constructing the
rest of P and the rest of () from a smaller two line array. To be specific consider the two

line array
1 3 5 6 8
(7T 2 9 5 3)

and focus on what happens to the first rows of P and @ as the two line array is processed.
The specific actions that take place are:

— Insert 7, Q11 «+ 1

— Insert 2, bump 7

— Insert 9, Q12 < 5

— Insert 5, bump 9 and

— Insert 3, bump 5.

Thus the first row of P is 23 and the first row of @ is 15. Furthermore the remaining rows
of P and @ are the tableaux corresponding to the “bumped” two-line array

3 6 8
79 5
This remark is important because in the following inductive proof we will prove that a

certain property holds for the first rows of P and () and then use the inductive hypothesis
for the rest of tableaux.

We are now ready to prove that a permutation p corresponds to a tableaux pair (P, Q) if and
only if p~! corresponds to (Q, P). We start with a definition. A column (g;, p;) is said to be in
class-t with respect to the two-line array M defined as

(fh q2 g3 -.. (Qn
P1 P2 P3 ... Dn

>, G <q<---<qpand p1,ps,...,p, distinct

if p; = P4 after the insertion algorithm has been applied successively to py,ps,...,p; starting
with an empty tableau P. Remember that every p; when first inserted into P is inserted into
row 1. So the above definition is saying that if an element p; is first inserted into column ¢ then
(pi, ¢;) is in class-t.

What are the pairs in class-1?7 If a pair (g;,p;) is in class-1, then it must be the case that
p; lived in the top left corner of the tableau when it first arrived. This means that p; is the
smallest among {p1,p2,-..,p;}. In other words p; is a left-to-right minimum. More precisely, a
pair (g;, p;) is in class-1 if and only if p; is a left-to-right minimum in (p, ps, ..., pn). Continuing
in this manner, it is easy to see that the pairs in class-2 correspond to the left-to-right minima
of the two-line array obtained after the pairs in class-1 have been deleted. TableauClasses is a
Combinatorica function that partitions the elements of permutation p into classes according to
their initial columns during Young tableaux construction.

In[1]:= TableauClasses[{5, 1, 3, 4, 2}]
out[1]= {{1, 5}, {2, 3}, {4}}

For any fixed ¢, the elements of class ¢t can be labeled

(qiupil)’ (qz'zapiQ)a) (qlkapzk,)

in such a way that
iy < Qip < -+ < Qi
and
Piy > Piy > - > Diy-
This is because the tableau position Pj; takes on the decreasing sequence of values p;, , pi,, - - - , Di,
as the insertion algorithm proceeds. At the end of the construction we have

Py = p;, Q1 = gi, -

The “inverse” of M, denoted M !, is the two-line array obtained by exchanging the two rows of
M and then sorting according to the first row. Now we make the observation that (g;,p;) is in
class-t with respect to M if and only if (p;, ¢;) is in class-t with respect to M ~!. This observation
immediately follows from an alternate characterization of elements in class-t. A pair (g;, p;) is
in class-t with respect to M if and only if ¢ is the maximum number of indices i1, 4o, .. .,4; such
that

Gin < Gip << Gi, =4qi
and

Piy < Piy < -+ < DPiy = Pi-
Because of the symmetry of the inequalities it follows that (g;, p;) is in class-t with respect to M
if and only if (p;, ¢;) is in class-t with respect to M ~1. Below we provide an example to illustrate
this alternative characterization of class-t, but leave the proof as an exercise. The permutation
in the example below has 4 classes. The pair (14, 15) is in class-4 because

(1,8) < (3,12) < (5,14) < (14,15).

Here the < sign above stands for both coordinates being smaller. Similarly, this characterization
can be verified for other pairs.

In[1]:= p = RandomPermutation[15]
Out[1]= {8, 4, 12, 10, 14, 13, 7, 6, 2, 1, 5, 3, 9, 15, 11}

In[6] := TableauClasses[p] /. i_Integer :> {Position[p, i]J[[1,1]1], i} // ColumnForm
Out[6]= {{10, 1}, {9, 2}, {2, 4}, {1, 8}}

{{12, 3}, {11, 5}, {8, 6}, {7, 7}, {4, 10}, {3, 12}}

{{13, 9}, {6, 13}, {5, 14}}

{{15, 11}, {14, 15}}

The fact that (g;,p;) is in class-t with respect to M if and only if (p;, ¢;) is in class-t with respect
to M~ is very useful for our next step. Let

{(qi17p’il)’ (qizapiQ)J ey (qikap’ik)}

be the elements in class-t with respect to M such that
iy < Qin <+ < Qi

and

Then class-t with respect to M1 is

{@iuqz&): (pi2>Qi2)>) (pikaqik)}

such that
Pi, < < DPip <DPiy

and
Qi, > > Qi > Qiy -

Now suppose that the RSK-construction is carried out on M ~! and the resulting tableaux pair
is (P~1,Q1). After M ! is processed P, = ¢;, and Q;;' = p;,. Now that Pi; = Q;,;* and
Q1 = P;;" and this means that the first rows of P and and Q! are identical and the first rows
of Q and P! are identical. Now suppose that the remaining rows of P and () are constructed
from the “bumped” two-line array R, obtained from M by deleting ¢;’s and p;’s that are in the
first rows. Similarly denote by R~! the “bumped” two-line array obtained from M ~!. It is easy
to see that R~! is the “inverse” of R and by using induction we see that the rest of the rows of
P are identical to the rest of the rows of Q! and the rest of the rows of @ are identical to the
rest of the rows of P~!. Thus we have shown that a permutation p corresponds to a tableaux
pair (P, Q) if and only if p~! corresponds to (Q, P).

From this we immediately get a bijection between n-involutions and tableaux with elements
1,2,...,n because for any involution p, p = p~! and for the corresponding tableaux (P, Q) =
(@, P) implying that P = (. So every involution corresponds to a single tableaux P. In the
opposite direction, given a tableau P we can start with the pair (P, P) and obtain the involution
corresponding to (P, P).

