Homework 2

22C:196 Computational Combinatorics
Due on October 16, 2001

Part 1

For the following 3 problems, you do not have to write code.

1. Prove or disprove: every n-permutation is the product of two n-derangements.
(Hint: I sketched a proof of this claim in class, first showing how it works for transpositions
and then extending it to involutions and finally to arbitrary permutations.)

2. In class we studied a recursive algorithm for generating k-subsets on [n] in Gray code
(minimum change) order. In this order, each k-subset can be obtained from the previous
by one insertion and one deletion. Describe an algorithm that takes a k-subset and returns
the next k-subset in this order.

3. How many ways are there to pay 50 cents? More specifically, suppose you have an unlimited
supply of pennies (1 cent), nickels (5 cents), dimes (10 cents), and quarters (25 cents). In
how many ways can you use these coins to make 50 cents?

Let us use the generating function approach to solve this problem. Let P,, N,,D,, and
@, be the number of ways to pay n cents when we are allowed to use coins that are worth
at most 1, 5, 10, and 25 cents respectively. So Q25 is the answer to the problem. So P, =1
for all n. Let P(z), N(z), D(z), and Q(z) be the generating functions for the sequences P,,
Ny, D, and @, respectively. First derive closed forms for P(z), N(z), D(z), and Q(z)-

Then using these generating functions and equating coefficients of like terms derive recur-
rence relations for P,, N,, D,, and @),. Use these recurrences to compute (25.

4. Here is the Mathematica implementation of a function called NewNumberQfPartitions that
computes p(n, k) using the recurrence p(n, k) = p(n — k, k) + p(n, k — 1).

NewNumberOfPartitions[n_Integer?Positive, k_Integer?Positive]
NewNumberOfPartitions[n, n] /; (k > n)

NewNumberOfPartitions[n_Integer?Positive, 0] := 0
NewNumberQfPartitions[0, k_Integer] := 1 /; (k >= 0)

NewNumberOfPartitions[n_Integer?Positive, k_Integer?Positive]
NewNumberOfPartitions[n - k, k] + NewNumberOfPartitions[n, k

1]

In this problem we are interested in the efficiency of this and related functions. Time the
above function for values n = 20, 25, 30, 35,40, with £ = n and report your answers. Then
change the recursive part of the function to

NewNumberOfPartitions[n_Integer?Positive, k_Integer?Positive] :=
NewNumberOfPartitions[n, k] = NewNumberOfPartitions[n - k, k] +
NewNumberOfPartitions[n, k - 1]

Time the function again for the same values of n and k and report your answers. What
difference do you notice? How do you explain the difference? For k = n, what is the
running time of NewNumberOfPartitions expressed in asymptotic notation, as a function
of n? Show your calculations (not just the answer).



Part 11

For the following 2 problems you have to write Mathematica code or perform experiments
with Combinatorica functions. Submit a Mathematica notebook containing solutions to these
problems.

1. Based on Problem 1 in Part I, implement a function called DecomposeIntoDerangements
that takes an arbitrary m-permutation and returns a list of two m-permutations whose
product is the given n-derangement.

2. Using the solution in Problem 2 in Part I, implement a function called NextGrayCodeKSubset
that takes as input a k-subset of [n] returns the next k-subset in Gray code order. Write
a function called NewGrayCodeKSubsets that calls NextGrayCodeKSubset repeatedly to
generate the list of all k-subsets of [n] in Gray code order.




