Homework 1

22C:196 Computational Combinatorics
Due on September 18, 2001

Part 1

For the following 3 problems, you do not have to write code.

1. Describe an algorithm to compute the rank of an n-permutation in Johnson-Trotter order
(assuming that the Johnson-Trotter algorithm starts with I,).
(Hint: For an m-permutation p express Rank(p) in terms of Rank(q), where ¢ is an
(n — 1)-permutation obtained from p. Use this to devise a recursive algorithm.)

2. An order-k inversion vector is an inversion vector whose entries sum up to k. Describe an
algorithm that takes positive integers n and k and generates all order-k inversion vectors
of length n — 1.

(Hint: The first element of an n — 1-inversion vector can have any integer value between
1 and min{n — 1,k}. For each value that the first element takes, generate all possible
inversion vectors of length n — 2 and of the appropriate order.)

3. Let L,, be denote the number of length n involutions, that is, n-permutations that have
cycles of length at most two. Prove the recurrence

Ly=Lp 1+ (’I’L - ]-)Ln—Z

for any integer n > 1, letting L; = Lo = 1. Use a technique similar to the one used in the
proof of the recurrence for the Stirling numbers of the first kind.

Part 11

For the following 3 problems you have to write Mathematica code or perform experiments
with Combinatorica functions. Submit a Mathematica notebook containing solutions to these
three problems.

1. Using the solution to Problem 1 in Part I, implement a function called RankJTPermutation
in Mathematica to compute the rank in Johnson-Trotter order of a given n-permutation.

2. Using the solution in Problem 2 in Part I, implement a function called KInversionVectors
in Mathematica that takes as inputs n and k and generates all order-k inversion vectors of
length n — 1.

It is fairly easy to show that no two permutations have the same inversion vector. This
is usually done by constructing an algorithm that takes as input an inversion vector v of
length (n — 1) and returns an n-permutation p such that v is an inversion vector of p. A
Combinatorica function called FromInversionVector provides an implementation of this
algorithm.

Implement a function called KInversionPermutations in Mathematica that takes as input
positive integers n and k and generates all n-permutations that have k inversions.

3. The Combinatorica function MakeGraph[v, f] constructs the graph whose vertices cor-
respond to v and whose edges are between pairs of vertices for which the binary relation
defined by the boolean function f is true. This function is useful in defining graphs for
combinatorial objects. For example, consider the graph P, = (V,,, E,) defined in class as
having vertex set V,, equal to the the set of all n-permutations and edge set E,, containing
edges between pairs of permutations that can be obtained from each other by a swap.

The code below defines a Mathematica function called SwapGraph that takes a positive
integer n and returns the graph P,.



SwapGraph[n_Integer?Positive] :=
MakeGraph[Permutations[n],

Length[
Select[
ToCycles[
Permute[InversePermutation[#1], #2]
]’
Length[#] == 1&
]
=n-2%&,

Type -> Undirected
]

The function simply calls, MakeGraph with the appropriate arguments. The first argument
is Permutations[n] because this is the set of vertices of the graph. The second argument
is a boolean function that takes two permutations as arguments referred to as #1 and #2
above. For any n-permutations p, ¢, and r, if p x ¢ = r, then ¢ = p~! x r. Specifically, if
p and r can be obtained from each other via a single swap, then ¢ is a swap, that is, an
n-permutation with n — 2 1-cycles and one 2-cycle. Thus the boolean function computes
p~! x r, converts the result into its cycle structure, selects cycles of length 1, and then
checks to see if these are n — 2 in number.

For example, typing
ShowGraph [SwapGraph [4]]

produces Py. As expected this graph has 24-vertex 6-regular graph.

In this problem, I want you to write a function TwoSwapGraph to generate a graph P, , =
(Vi,k, En k) whose vertex set V,,  equals the set of all n-permutations with exactly k cycles



and whose edge set contains edges connecting permutations that can be obtained from each
other by exactly two distinct swaps. TwoSwapGraph depends on being able to generate the
set of all n-permutations with & cycles. Write a function called KCyclePermutations to
do this.

Then use the Combinatorica function HamiltonianCycle to determine if P 3 has a Hamil-
tonian cycle. Try to answer this question for P, 3 for n larger than 67 How much higher
can you go before the graph becomes too large for Hamiltonian cycle.




