
395

Chapter 11
AXIOMATIC SEMANTICS

The techniques for operational semantics, introduced in Chapters 5
through 8, and denotational semantics, discussed in Chapters 9 and
10, are based on the notion of the “state of a machine”. For example, in

the denotational semantics of Wren, the semantic equation for the execution
of a statement is a mapping from the current machine state, represented by
the store, input stream and output stream, to a new machine state.

Based on methods of logical deduction from predicate logic, axiomatic se-
mantics is more abstract than denotational semantics in that there is no
concept corresponding to the state of the machine. Rather, the semantic
meaning of a program is based on assertions about relationships that re-
main the same each time the program executes. The relation between an
initial assertion and a final assertion following a piece of code captures the
essence of the semantics of the code. Another piece of code that defines the
algorithm slightly differently yet produces the same final assertion will be
semantically equivalent provided any initial assertions are also the same.
The proofs that the assertions are true do not rely on any particular architec-
ture for the underlying machine; rather they depend on the relationships
between the values of the variables. Although individual values of variables
change as a program executes, certain relationships among them remain the
same. These invariant relationships form the assertions that express the
semantics of the program.

11.1 CONCEPTS AND EXAMPLES

Axiomatic semantics has two starting points: a paper by Robert Floyd and a
somewhat different approach introduced by C. A. R. Hoare. We use the nota-
tion presented by Hoare. Axiomatic semantics is commonly associated with
proving a program to be correct using a purely static analysis of the text of
the program. This static approach is in clear contrast to the dynamic ap-
proach, which tests a program by focusing on how the values of variables
change as a program executes. Another application of axiomatic semantics is
to consider assertions as program specifications from which the program
code itself can be derived. We look at this technique briefly in section 11.5.

396 CHAPTER 11 AXIOMATIC SEMANTICS

Axiomatic semantics does have some limitations: Side effects are disallowed
in expressions; the goto command is difficult to specify; aliasing is not al-
lowed; and scope rules are difficult to describe unless we require all identifier
names to be unique. Despite these limitations, axiomatic semantics is an
attractive technique because of its potential effect on software development:

• The development of “bug free” algorithms that have been proved correct.

• The automatic generation of program code based on specifications.

Axiomatic Semantics of Programming Languages

In proving the correctness of a program, we use an applied predicate (first-
order) logic with equality whose individual variables correspond to program
variables and whose function symbols include all the operations that occur
in program expressions. Therefore we view expressions such as “2*n+1” and
“x+y>0” as terms in the predicate logic (mathematical terms) whose values
are determined by the current assignment to the individual variables in the
logic language. Furthermore, we assume the standard mathematical and
logical properties of operations modeled in the logic—for example, 2*3+1 = 7
and 4+1>0 = true.

An assertion is a logical formula constructed using the individual variables,
individual constants, and function symbols in the applied predicate calcu-
lus. When each variable in an assertion is assigned a value (determined by
the value of the corresponding program variable), the assertion becomes valid
(true) or invalid (false) under a standard interpretation of the constants and
functions in the logical language.

Typically, assertions consist of a conjunction of elementary statements de-
scribing the logical properties of program variables, such as stating that a
variable takes values from a particular set, say m < 5, or defining a relation
among variables, such as k = n2. In many cases, assertions correspond di-
rectly to Boolean expressions in Wren, and the two notions are frequently
confused in axiomatic semantics. We maintain a distinction between asser-
tions and Boolean expressions by always presenting assertions in an italic
font like this. In some instances, assertions use features of predicate logic
that go beyond what is expressible in Boolean expressions—namely, when
universal quantifiers, existential quantifiers, and implications occur in for-
mulas.

For the purposes of axiomatic semantics, a program reduces to the meaning
of a command, which in the abstract syntax includes a sequence of com-
mands. We describe the semantics of a program by annotating it with asser-
tions that are always valid when the control of the program reaches the points
of the assertions. In particular, the meaning or correctness of a command (a

39711.1 CONCEPTS AND EXAMPLES

program) is described by placing an assertion, called a precondition, before
a command and another assertion, called a postcondition, after the com-
mand:

{ PRE } C { POST }.

Therefore the meaning of command C can be viewed as the ordered pair
<PRE, POST>, called a specification of C. We say that the command C is
correct with respect to the specification given by the precondition and
postcondition provided that if the command is executed with values that
make the precondition true, the command halts and the resulting values
make the postcondition true. Extending this notion to an entire program
supplies a meaning of program correctness and a semantics to programs in
a language.

Definition: A program is partially correct with respect to a precondition
and a postcondition provided that if the program is started with values that
make the precondition true, the resulting values make the postcondition
true when the program halts (if ever). If it can also be shown that the pro-
gram terminates when started with values satisfying the precondition, the
program is called (totally) correct.

Partial Correctness = (Precondition and Termination ⊃ Postcondition)

Total Correctness = (Partial Correctness and Termination). ❚

We focus on proofs of partial correctness for programs in Wren and Pelican in
the next two sections and briefly look at proofs of termination in section
11.4. The goal of axiomatic semantics is to provide axioms and proof rules
that capture the intended meaning of each command in a programming lan-
guage. These rules are constructed so that a specification for a given com-
mand can be deduced, thereby proving the partial correctness of the com-
mand relative to the specification. Such a deduction consists of a finite se-
quence of assertions (formulas of the predicate logic) each of which is either
the precondition, an axiom associated with a program command, or a rule of
inference whose premises have already been established.

Before considering the axioms and proof rules for Wren, we need to discuss
the problem of specifications briefly. Extensive literature has dealt with the
difficult problem of accurate specifications of algorithms. Programmers fre-
quently miss the subtlety inherent in precise specifications. As an example,
consider the following specification of the problem of finding the smaller of
two nonnegative integers:

PRE = { m≥0 and n≥0 }

POST = { minimum≤m and minimum≤n and minimum≥0 }.

Unhappily, this specification is satisfied by the command “minimum := 0”,
which does not satisfy the informal description. We do not have space in this

398 CHAPTER 11 AXIOMATIC SEMANTICS

text to consider the problems of accurate specifications, but correctness proofs
of programs only serve the programmer when the proof is carried out relative
to correct specifications.

11.2 AXIOMATIC SEMANTICS FOR WREN

Again Wren serves as the initial programming language for semantic specifi-
cation. In the next section we expand the presentation to Pelican with con-
stants, procedures, blocks, and recursion. For each of these languages, axi-
omatic semantics focuses on assertions that describe the logical relation-
ships between the values of program variables at points in a program.

An axiomatic analysis of Wren program behavior concentrates on the com-
mands of the programming language. In the absence of side effects, expres-
sions in Wren can be treated as mathematical expressions and be evaluated
using mathematical rules. We assume that any program submitted for se-
mantic analysis has already been verified as syntactically correct, including
adherence to all context conditions. Therefore the declarations (of variables
only) in Wren can be ignored in describing its axiomatic semantics. In the
next section we investigate the impact of constant and procedure declara-
tions on this approach to semantics.

Assignment Command

The first command we examine is assignment, beginning with three examples
of preconditions and postconditions for assignment commands:

Example 1: { k = 5 } k := k + 1 { k = 6 }

Example 2: { j = 3 and k = 4} j := j + k { j = 7 and k = 4 }

Example 3: { a > 0 } a := a – 1 { a ≥ 0 }.

For these simple examples, correctness is easy to prove either proceeding
from the precondition to the postcondition or from the postcondition to the
precondition. However, many times starting with the postcondition and work-
ing backward to derive the precondition proves easier (at least initially). We
assume expressions with no side effects in the assignment commands, so
only the the target variable is changed. “Working backward” means substi-
tuting the expression on the right-hand side of the assignment for every oc-
currence of the target variable in the postcondition and deriving the precon-
dition, following the principle that whatever is true about the target variable
after the assignment must be true about the expression before the assign-
ment. Consider the following examples:

399

Example 1

{ k = 6 } postcondition
{ k + 1 = 6 } substituting k + 1 for k in postcondition
{ k = 5 } precondition, after simplification.

Example 2

{ j = 7 and k = 4 } postcondition
{ j + k = 7 and k = 4 } substituting j + k for j in postcondition
{ j = 3 and k = 4} precondition, after simplification.

Example 3

{ a ≥ 0 } postcondition
{ a – 1 ≥ 0 } substituting a – 1 for a in postcondition
{ a ≥ 1 } simplification
{ a > 0 } precondition, since a≥1 ≡ a>0 assuming a is an integer.

Given an assignment of the form V := E and a postcondition P, we use the
notation P[V→E] (as in Chapter 5) to indicate the consistent substitution of E
in place of each free occurrence of V in P. This notation enables us to give an
axiomatic definition for the assignment command as

{ P[V→E] } V := E { P } (Assign)

The substitution operation P[V→E] needs to be defined carefully since for-
mulas in the predicate calculus allow both free and bound occurrences of
variables. This task will be given as an exercise at the end of this section.

If we view assertions as predicates—namely, Boolean valued expressions with
a parameter—the axiom can be stated

{ P(E) } V := E { P(V) }.

A proof of correctness following the assignment axiom can be summarized by
writing

{ a > 0 } ⊃

{ a ≥ 1 } ⊃

{ a – 1 ≥ 0 } = { P(a–1) }

a := a–1

{ a ≥ 0 } = { P(a) }

where ⊃ denotes logical implication. The axiom that specifies “V := E” essen-
tially states that if we can prove a property about E before the assignment,
the same property about V holds after the assignment.

11.2 AXIOMATIC SEMANTICS FOR WREN

400 CHAPTER 11 AXIOMATIC SEMANTICS

At first glance the assignment axiom may seem more complicated than it
needs to be with its use of substitution in the precondition. To appreciate the
subtlety of assignment, consider the following unsound axiom:

{ true } V := E { V = E }.

This apparently reasonable axiom for assignment is unsound because it al-
lows us to prove false assertions—for example,

{ true } m := m+1 { m = m+1 }.

Input and Output

The commands read and write assume the existence of input and output
files. We use “IN = ” and “OUT = ” to indicate the contents of these files in
assertions and brackets to represent a list of items in a file; so [1,2,3] repre-
sents a file with the three integers 1, 2 and 3. We consider the left side of the
list to be the start of the file and the right side to be the end. For example,
affixing the value 4 onto the end of the file [1,2,3] is represented by writing
[1,2,3][4]. In a similar way, 4 is prefixed to the file [1,2,3] by writing [4][1,2,3].
Juxtaposition means concatenation.

Capital letters are used to indicate some unspecified item or sequence of
items; [K]L thus represents a file starting with the value K and followed by any
sequence L, which may or may not be empty. For contrast, small caps denote
numerals, and large caps denote lists of numerals. Exploiting this notation,
we specify the semantics of the read command as removing the first value
from the input file and “assigning” it to the variable that appears in the com-
mand.

{ IN = [K]L and P[V→K] } read V { IN = L and P } (Read)

The write command appends the current value denoted by the expression to
the end of the output file. Our axiomatic rule also specifies that the value of
the expression is not changed and that no other assertions are changed.

{ OUT=L and E=K and P } write E { OUT=L[K] and E=K and P } (Write)

where P is any arbitrary set of additional assertions.

The symbols acting as variables in the Read axiom serve two different pur-
poses. Those symbols that describe the input list, a numeral and a list of
numerals, stay constant throughout any deduction containing them. We re-
fer to symbols of this type as logical variables, meaning that their bindings
are frozen during the deduction (see Appendix A for a discussion of logical
variables in Prolog). In contrast, the variable V and any variables in the ex-
pression E correspond to program variables and may represent different val-
ues during a verification. The values of these variables depend on the current

401

assignment of values to program variables at the point where the assertion
containing them occurs. When applying the axioms and proof rules of axiom-
atic semantics, we will use uppercase letters for logical variables and lower-
case letters for individual variables corresponding to program variables.

The axioms and rules of inference in an axiomatic definition of a program-
ming language are really axiom and rule schemes. The symbols “V”, “E”, and
“P” need to be replaced by actual variables, expressions, and formulas, re-
spectively, to form instances of the axioms and rules for use in a deduction.

Rules of Inference

For other axiomatic specifications, we introduce rules of inference that have
the form

H1, H2, ..., Hn

H

This notation can be interpreted as

If H1, H2, ..., Hn have all been verified, we may conclude that H is valid.

Note the similarity with the notation used by structural operational seman-
tics in Chapter 8. The sequencing of two commands serves as the first ex-
ample of a rule of inference:

{ P } C1 { Q }, { Q } C2 { R } (Sequence)

{ P } C1; C2 { R }

This rule says that if starting with the precondition P we can prove Q after
executing C1 and starting with Q we can prove R after C2, we can conclude
that starting with the precondition P, R is true after executing C1; C2. Ob-
serve that the middle assertion Q is “forgotten” in the conclusion.

The if command involves a choice between alternatives. Two paths lead
through an if command; therefore, if we can prove each path is correct given
the appropriate value of the Boolean expression, the entire command is cor-
rect.

{ P and B } C1 { Q }, { P and (not B) } C2 { Q } (If-Else)

 { P } if B then C1 else C2 end if { Q }

Note that the Boolean expression B is used as part of the assertions in the
premises of the rule. The axiomatic definition for the single alternative if is
similar, except that for the false branch we need to show that the final asser-
tion can be derived directly from the initial assertion P when the condition B
is false.

11.2 AXIOMATIC SEMANTICS FOR WREN

402 CHAPTER 11 AXIOMATIC SEMANTICS

{ P and B } C { Q }, (P and (not B)) ⊃ Q (If-Then)

{ P } if B then C end if { Q }

Before presenting the axiomatic definition for while, we examine some gen-
eral rules applicable to all commands and verify a short program. Sometimes
the result that is proved is stronger than required. In this case it is possible
to weaken the postcondition.

{ P } C { Q }, Q ⊃ R (Weaken)

 { P } C { R }

Other times the given precondition is stronger than necessary to complete
the proof.

P ⊃ Q, { Q } C { R } (Strengthen)

{ P } C { R }

Finally, it is possible to relate assertions by the logical relationships and
and or.

{ P1 } C { Q1 }, { P2 } C { Q2 } (And)

{ P1 and P2 } C { Q1 and Q2 }

{ P1 } C { Q1 }, { P2 } C { Q2 } (Or)

{ P1 or P2 } C { Q1 or Q2 }

Example: For a first example of a proof of correctness, consider the following
program fragment.

read x; read y;
if x < y then write x

else write y
end if

To avoid the runtime error of reading from an empty file, the initial assertion
requires two or more items in the input file, which we indicate by writing two
items in brackets before the rest of the file. The output file may or may not be
empty initially.

Precondition: P = { IN = [M,N]L1 and OUT = L2 }

The program writes to the output file the minimum of the two values read. To
specify this as an assertion, we consider two alternatives:

Postcondition: Q = { (OUT = L2[M] and M < N) or (OUT = L2[N] and M ≥ N) }

The correct assertion after the first read command is

R = { IN = [N]L1 and OUT = L2 and x = M },

403

and after the second read command the correct assertion is

S = { IN = L1 and OUT = L2 and x = M and y = N }.

We obtain these assertions by working the axiom for the read command back-
ward through the first two commands. The verification of these assertions
can then be presented in a top-down manner as follows:

{ IN = [M,N]L1 and OUT = L2 } ⊃
{ IN = [M,N]L1 and OUT = L2 and M = M } = P'

read x;
{ IN = [N]L1 and OUT = L2 and x = M } ⊃
{ IN = [N]L1 and OUT = L2 and x = M and N = N } = R'

read y;
{ IN = L1 and OUT = L2 and x = M and y = N } = S.

Since { x < y or x ≥ y } is always true, we can add it to our assertion without
changing its truth value. After manipulating this assertion using the logical
equivalence (using the symbol ≡ for equivalence),

(P1 and (P2 or P3)) ≡ ((P1 and P2) or (P1 and P3)),

we have the assertion:

S' = { (IN = L1 and OUT = L2 and x = M and y = N and (x < y or x ≥ y) } ≡

{ (IN = L1 and OUT = L2 and x = M and y = N and x < y) or
(IN = L1 and OUT = L2 and x = M and y = N and x ≥ y) }.

Representing this assertion as { P1 or P2 }, we now must prove the validity of

{ P1 or P2 }
if x < y then write x

else write y
end if

{ Q }

where Q is { (OUT = L2[M] and M < N) or (OUT = L2[N] and M ≥ N) }. Therefore we
must prove valid

{ (P1 or P2) and B } write x { Q }

and { (P1 or P2)and (not B) } write y { Q }

where B is { x < y }.

{ (P1 or P2) and B } simplifies to

T1 = { IN = L1 and OUT = L2 and x = M and y = N and x < y }.

After executing “write x”, we have

{ IN = L1 and OUT = L2[M] and x = M and y = N and M < N }.

11.2 AXIOMATIC SEMANTICS FOR WREN

404 CHAPTER 11 AXIOMATIC SEMANTICS

Call this Q1. Similarly { (P1 or P2) and (not B) } simplifies to

T2 = { IN = L1 and OUT = L2 and x = M and y = N and x ≥ y }.

After the “write y” we have

{IN = L1 and OUT = L2[N] and x = M and y = N and M ≥ N}.

Call this Q2. Since Q1 ⊃ (Q1 or Q2.) and Q2 ⊃ (Q1 or Q2)) we replace each
individual assertion with

Q1 or Q2 ≡
((IN = L1 and OUT = L2[M] and x = M and y = N and M < N) or
(IN = L1 and OUT = L2[N] and x = M and y = N and M ≥ N)).

Finally we weaken the conclusion by removing the parts of the assertion
about the input file and the values of x and y to arrive at our final assertion,
the postcondition. Figure 11.1 displays the deduction as proof trees using
the abbreviations given above. Note that we omit “end if” to save space. ❚

P ⊃ P', {P'} read x {R} R ⊃ R', {R'} read y {S}, S ⊃ S', S' ⊃ (P1 or P2)

{P} read x {R} {R} read y {P1 or P2}

{P} read x ; read y {P1 or P2}

(((P1 or P2) and B) ⊃ T1), {T1} write x {Q1}

{(P1 or P2) and B} write x {Q1}, Q1 ⊃ (Q1 or Q2)

{(P1 or P2) and B} write x {Q1 or Q2}

 (((P1 or P2) and (not B)) ⊃ T2), {T2} write y {Q2}

{(P1 or P2) and (not B)} write y {Q2}, Q2 ⊃ (Q1 or Q2)

{(P1 or P2) and (not B)} write y {Q1 or Q2}

{P1 or P2} if x < y then write x else write y {Q1 or Q2}, (Q1 or Q2) ⊃ Q

{P1 or P2} if x < y then write x else write y {Q}

{(P1 or P2) and B} write x {Q1 or Q2}, {(P1 or P2) and (not B)} write y {Q1 or Q2}

{P} read x ; read y {P1 or P2}, {P1 or P2} if x < y then write x else write y {Q}

{P} read x ; read y ; if x < y then write x else write y {Q}

Figure 11.1: Derivation Tree for the Correctness Proof

405

While Command and Loop Invariants

Continuing the axiomatic definition of Wren, we specify the while command:

{ P and B } C { P } (While)

{ P } while B do C end while { P and (not B) }

In this definition P is called the loop invariant. This assertion captures the
essence of the while loop: It must be true initially, it must be preserved after
the loop body executes, and, combined with the exit condition, it implies the
assertion that follows the loop. Figure 11.2 illustrates the situation.

C

B

{ P and B }

{ P and (not B) }

while

do

end while

Initialization: Show that
the loop invariant is valid
initially.

Preservation: Verify that the
loop invariant holds each time
the loop executes.

Completion: Prove that
the loop invariant and the
exit condition imply the
final assertion.

{ P }
1

2

3

1

2

3

Figure 11.2: Structure of the While Rule

The purpose of the Preservation step is to verify the premise for the While
rule shown above. The Initialization and Completion steps are used to tie the
while loop into its surrounding code and assertions.

Example: Discovering the loop invariant requires insight. Consider the fol-
lowing program fragment that calculates factorial, as indicated by the final
assertion. Remember, we use lowercase letters for variables and uppercase
(small caps) to represent numerals that remain constant.

{ N ≥ 0 }
k := N; f := 1;
while k > 0 do { loop invariant }

f := f * k; k := k – 1;
end while

{ f = N! }

11.2 AXIOMATIC SEMANTICS FOR WREN

406 CHAPTER 11 AXIOMATIC SEMANTICS

The loop invariant involves a relationship between variables that remains the
same no matter how many times the loop executes. The loop invariant also
involves the while loop condition, k > 0 in the example above, modified to
include the exit case, which is k = 0 in this case. Combining these condi-
tions, we have k ≥ 0 as part of the loop invariant. Other components of the
loop invariant involve the variables that change values as a result of loop
execution, f and k in the program above. We also look at the final assertion
after the loop and notice that N! needs to be involved. For this program, we
can discover the loop invariant by examining how N! is calculated for a simple
case, say N = 5. We examine the calculation in progress at the end of the loop
where k has just been decremented to 3.

f

k

 k !

3 • 2 • 1N! = 5 • 4 •

The variable f has stored the part of the computation completed so far, 5 • 4,
and k has the starting value for the remaining computation. So k! represents
the rest of the value to be computed. The complete value is f • k!, which, at all
times, must equal N!. We can show this in a table:

k k! f f•k!
5 120 1 120
4 24 5 120
3 6 20 120
2 2 60 120
1 1 120 120
0 1 120 120

Now we have our loop invariant: { f •k! = N! and k ≥ 0 }.

We show the loop invariant is initially true by deriving it from the initializa-
tion commands and the precondition.

{ N ≥ 0 } ⊃
{ N! = N! and N ≥ 0 }

k := N;
{ k! = N! and k ≥ 0 } ⊃
{ 1 • k! = N! and k ≥ 0 }

f := 1;
{ f • k! = N! and k ≥ 0 }

407

Note that N! = N! is a tautology when N ≥ 0, so we can replace it with true. We
also know for any clause P that (P and true) is equivalent to P. Thus we can
begin with the initial assertion N ≥ 0. Some of these implications are actually
logical equivalences, but we write implications because that is all we need for
the proofs.

To show that the loop invariant is preserved, we start with the invariant at
the bottom of the loop and push it back through the body of the loop to prove
{ P and B }, the loop invariant combined with the entry condition at the top of
the loop. Summarizing the proof gives us the following:

{ f•k! = N! and k > 0 } ⊃
{ f•k•(k–1)! = N! and k > 0 }

f := f * k;
{ f•(k–1)! = N! and k > 0 } ⊃
{ f•(k–1)! = N! and k–1≥ 0 }

k := k – 1;
{ f •k! = N! and k ≥ 0 }

We rely on the fact that k is an integer to transform the condition k > 0 into
the equivalent condition k–1 ≥ 0.

Finally, we must prove the assertion after the while loop can be derived from
(P and not B).

{ f • k! = N! and k ≥ 0 and (not k > 0) } ⊃
{ f • k! = N! and k ≥ 0 and k ≤ 0 } ⊃
{ f • k! = N! and k = 0 } ⊃
{ f = N! and k = 0 } ⊃ { f = N! }

The last simplification is a weakening of the assertion { f = N! and k = 0 }. ❚

While proving this algorithm to be correct, we avoid some problems that
occur when the algorithm is executed on a real computer. For example, the
factorial function grows very rapidly, and it does not take a large value of N
for N! to exceed the storage capacity for integers on a particular machine.
However, we want to develop a machine-independent definition of the se-
mantics of a programming language, so we ignore these restrictions. We sum-
marize our axiomatic definitions for Wren in Figure 11.3, including the Skip
axiom, which makes no change in the assertion.

11.2 AXIOMATIC SEMANTICS FOR WREN

408 CHAPTER 11 AXIOMATIC SEMANTICS

Assign { P[V→E] } V := E { P }

Read { IN = [K]L and P[V→K] } read V { IN = L and P }

Write { OUT=[L] and E=K and P } write E { OUT= L[K] and E=K and P }

Skip { P } skip { P }

Sequence {P} C1 {Q}, {Q} C2 {R}
{P} C1; C2 {R}

If-Then {P and B} C {Q}, (P and not B) ⊃ Q
{P} if B then C end if {Q}

If-Else {P and B} C1 {Q}, {P and not B} C2 {Q}
{P} if B then C1 else C2 end if {Q}

While {P and B} C {P}
{P} while B do C end while {P and not B}

Weaken {P} C {Q}, Q ⊃ R
Postcondition {P} C {R}

Strengthen P ⊃ Q, {Q} C {R}
Precondition {P} C {R}

And {P} C {Q}, {P'} C {Q'}
{P and P'} C {Q and Q'}

Or {P} C {Q}, {P'} C {Q'}
{P or P'} C {Q or Q'}

Figure 11.3 Axiomatic Semantics for Wren

More on Loop Invariants

Constructing loop invariants for while commands in a program provides the
main challenge when proving correctness with an imperative language. Al-
though no simple formula solves this problem, several general principles can
help in analyzing the logic of the loop when finding an invariant.

• A loop invariant describes a relationship among the variables that does
not change as the loop is executed. The variables may change their values,
but the relationship stays constant.

• Constructing a table of values for the variables that change often reveals a
property among variables that does not change.

• Combining what has already been computed at some stage in the loop
with what has yet to be computed may yield a constant of some sort.

409

• An expression related to the test B for the loop can usually be combined
with the assertion { not B } to produce part of the postcondition.

• A possible loop invariant can be assembled to attempt to carry out the
proof. We need enough to produce the final postcondition but not so much
that we cannot establish the initialization step or prove the preservation of
the loop invariant.

Example: Consider a short program that computes the exponential function
for two nonnegative integers, M and N. The code specified by means of a pre-
condition and postcondition follows:

{ M>0 and N≥0 }
a := M; b := N; k := 1;
while b>0 do

if b=2*(b/2)
then a := a*a; b := b/2
else b := b–1; k := k*a

end if
end while

{ k = MN }

Recall that division in Wren is integer division. We begin by tracing the algo-
rithm with two small numbers, M=2 and N=7, and thereby build a table of
values to search for a suitable loop invariant. The value MN = 128 remains
constant throughout the execution of the loop. Since the goal of the code is to
compute the exponential function, we add a column to the table for the value
of ab, since a is the variable that gets multiplied.

a b k ab

2 7 1 128
2 6 2 64
4 3 2 64
4 2 8 16

16 1 8 16
16 0 128 1

Observe that ab changes exactly when k changes. In fact, their product is
constant, namely 128. This relationship suggests that k•ab = MN will be part
of the invariant. Furthermore, the loop variable b decreases to 0 but always
stays nonnegative. The relation b≥0 seems to be invariant, and when com-
bined with “not B”, which is b≤0, establishes b=0 at the end of the loop.
When b=0 is joined with k•ab = MN, we get the postcondition k = MN. Thus we
have as a loop invariant:

{ b≥0 and k•ab = MN }.

11.2 AXIOMATIC SEMANTICS FOR WREN

410 CHAPTER 11 AXIOMATIC SEMANTICS

Finally, we verify the program by checking that the loop invariant is consis-
tent with an application of the rule for the while command in the given
setting.

Initialization

{ M>0 and N≥0 } ⊃
{ M=M>0 and N=N≥0 and 1=1 }

a := M; b := N; k := 1;
{ a=M>0 and b=N≥0 and k=1 } ⊃
{ b≥0 and k•ab=MN }

Preservation

Case 1: b is even, that is, b = 2i ≥ 0 for some i ≥ 0.
Then b=2•(b/2) ≥ 0 and b/2 = i ≥ 0.

{ b≥0 and k•ab=MN and b>0 } ⊃
{ b>0 and k•ab=M

N } ⊃
{ b/2>0 and k•(a•a)b/2=MN }

a := a*a; b := b/2
{ b>0 and k•ab=MN } ⊃ { b≥0 and k•ab=MN }

Case 2: b is odd, that is, b = 2i+1 > 0 for some i ≥ 0.
Then b<>2•(b/2).

{ b≥0 and k•ab=MN and b>0 } ⊃
{ b>0 and k•ab=M

N } ⊃
{ b–1≥0 and k•a•ab-1=MN }

b := b–1; k := k*a
{ b≥0 and k•ab=MN }

These two cases correspond to the premises in the rule for the if com-
mand. The conclusion of the axiom establishes:

{ b≥0 and k•ab=MN and b>0 }
if b=2*(b/2) then a := a*a; b := b/2

else b := b–1; k := k*a end if
{ b≥0 and k•ab=M

N }

Completion

{ b≥0 and k•ab=MN and b≤0 } ⊃
{ b=0 and k•ab=MN } ⊃ { k=MN } ❚

Nested While Loops

Example: We now consider a more complex algorithm with nested while
loops. In addition to a precondition and postcondition specifying the goal of
the code, each while loop is annotated by a loop invariant to be supplied in
the proof.

411

{ IN = [A] and OUT = [] and A ≥ 0 }
read x;
m := 0; n := 0; s := 0;
while x>0 do { outer loop invariant: C }

x := x–1; n := m+2; m := m+1;
while m>0 do { inner loop invariant: D }

m := m–1; s := s+1
end while;
m := n

end while;
write s

{ OUT = [A2] }

Imagine for now that an oracle has provided the invariants for this program.
Later we discuss how the invariants might be discovered. Given the complex-
ity of the problem, it is convenient to introduce predicate notation to refer to
the invariants. The outer invariant C is

C(x,m,n,s) = (x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[]).

Initialization (outer loop): First we prove that this invariant is true initially
by working through the initialization code. Check the deduction from bot-
tom to top.

{ IN = [A] and OUT = [] and A≥0 } ⊃
{ A≥0 and 0=2(A–A) and 0=(A–A)2 and IN = [A][] and OUT=[] }

read x;
{ x≥0 and 0=2(A–x) and 0=(A–x)2 and IN = [] and OUT=[] } ⊃
{ x≥0 and 0=2(A–x) and 0=0 and 0=(A–x)2 and IN = [] and OUT=[] }

m := 0;
{ x≥0 and m=2(A–x) and m=0 and 0=(A–x)2 and OUT=[] } ⊃
{ x≥0 and m=2(A–x) and m=0 and 0≥0 and 0=(A–x)2 and OUT=[] }

n := 0;
{ x≥0 and m=2(A–x) and m=n and n≥0 and 0=(A–x)2 and OUT=[] }

s := 0;
{ x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[] }.

Completion (outer loop): Next we show that the outer loop invariant and the
exit condition, followed by the write command, produce the desired final
assertion.

{ C(x,m,n,s) and x≤0 }
⊃ { x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[] and x≤0 }
⊃ { x=0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[] }
⊃ { s=A2 and OUT=[] }

and
{ s=A

2 and OUT=[] } write s { s=A
2 and OUT=[A2] } ⊃ { OUT=[A2] }.

11.2 AXIOMATIC SEMANTICS FOR WREN

412 CHAPTER 11 AXIOMATIC SEMANTICS

Preservation (outer loop): Showing preservation of the outer loop invariant
involves executing the inner loop; we thus introduce the inner loop invariant
D, again obtained from the oracle:

D(x,m,n,s) =
 (x≥0 and n=2(A–x) and m≥0 and n≥0 and m+s=(A–x)2 and OUT=[]).

Initialization (inner loop): We show that the inner loop invariant is initially
true by starting with the outer loop invariant, combined with the loop entry
condition, and pushing the result through the assignment commands before
the inner loop.

{ C(x,m,n,s) and x>0 }
≡ { x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[] and x>0 }
⊃ { x–1≥0 and m+2=2(A–x+1) and m+1≥0 and m+2≥0

and m+1+s=(A–x+1)2 and OUT=[] }
≡ { D(x–1,m+1,m+2,s) }
since (s=(A–x)2 and m+2=2(A–x+1)) ⊃ m+1+s=(A–x+1)2.

Therefore, using the assignment rule, we have

{ C(x,m,n,s) and x>0 } ⊃ { D(x–1,m+1,m+2,s) }
x := x–1; n := m+2; m := m+1

{ D(x,m,n,s) }.

Preservation (inner loop): Next we need to show that the inner loop invariant
is preserved, that is,

{ D(x,m,n,s) and m>0 } m := m–1; s := s+1 { D(x,m,n,s) }.

It suffices to show

(D(x,m,n,s) and m>0)
⊃ (x≥0 and n=2(A–x) and m≥0 and n≥0

and m+s=(A–x)2 and OUT=[] and m>0)
⊃ (x≥0 and n=2(A–x) and m–1≥0 and n≥0

and m–1+s+1=(A–x)2 and OUT=[])
≡ D(x,m–1,n,s+1).

The preservation step is complete because after the assignments, m replaces
m–1 and s replaces s+1 to produce the loop invariant D(x,m,n,s).

Completion (inner loop): To complete our proof, we need to show that the
inner loop invariant, combined with the inner loop exit condition and pushed
through the assignment m := n, results in the outer loop invariant:

{ D(x,m,n,s) and m≤0 } m := n { C(x,m,n,s) }.

It suffices to show (D(x,m,n,s) and m≤0) ⊃ C(x,n,n,s):

413

(D(x,m,n,s) and m≤0)
⊃ (x≥0 and n=2(A–x) and m≥0 and n≥0

and m+s=(A–x)2 and OUT=[] and m≤0)
⊃ (x≥0 and n=2(A–x) and n=n≥0 and s=(A–x)2 and OUT=[])
≡ C(x,n,n,s).

Thus the outer loop invariant is preserved. ❚

The previous verification suggests a derived rule for assignment commands:

 P ⊃ Q[V→E]

{ P } V := E { Q }

We used an application of this derived rule when we proved

(C(x,m,n,s) and x>0) ⊃ D(x–1,m+1,m+2,s)

from which we deduced

{ C(x,m,n,s) and x>0 }
x := x–1; n := m+2; m := m+1

{ D(x,m,n,s) }.

Proving a program correct is a fairly mechanical process once the loop invari-
ants are known. We have already suggested that one way to discover a loop
invariant is to make a table of values for a simple case and to trace values for
the relevant variables. To see how tracing can be used, let A = 3 in the previ-
ous example and hand execute the loops. The table of values is shown in
Figure 11.4.

The positions where the invariant C(x,m,n,s) for the outer loop should hold
are marked by arrows. Note how the variable s takes the values of the perfect
squares—namely, 0, 1, 4, and 9—at these locations. The difficulty is to de-
termine what s is the square of as its value increases.

Observe that x decreases as the program executes. Since A is constant, this
means the value A–x increases: 0, 1, 2, and 3. This gives us the relationship
s = (A–x)2. We also note that m is always even and increases: 0, 2, 4, 6. This
produces the relation m = 2(A–x) in the outer invariant.

For the inner loop invariant, s is not always a perfect square, but m+s is.
Also, in the inner loop, n preserves the final value for m as the loop executes.
So n also obeys the relationship n = 2(A–x).

Finally, the loop entry conditions are combined with the exit condition. For
the outer loop, x>0 is combined with x=0 to produce the condition x≥0 for the
outer loop invariant. In a similar way, m>0 is combined with m=0 to give m≥0
in the inner loop invariant.

11.2 AXIOMATIC SEMANTICS FOR WREN

414 CHAPTER 11 AXIOMATIC SEMANTICS

3 0 0 0 0

2 1 2 0 1

0 2 1

2 2 2 1

1 3 4 1 2

2 4 2

1 4 4 4

1 4 3

0 4 4

0 5 6 4 3

4 6 5

3 6 6

2 6 7

➜

1 6 8
0 6 9

0 6 6 9

➜

➜

➜

x m n s A-x

Figure 11.4: Tracing Variable Values

Since finding the loop invariant is the most difficult part of proving a pro-
gram correct, we present one more example. Consider the following program:

{ IN = [A] and A≥2 }
read n; b := true; d := 2;
while d<n and b do { loop invariant }

if n = d*(n/d) then b := false end if;
d := d+1

end while
{ b ≡ ∀ k[2≤k<A ⊃ not ∃ j[k•j = A]] }

The Boolean variable b is a flag, remaining true if no divisor of n, other than 1,
is found—in other words, if n is prime. If a divisor is found, b is set to false
and remains false. Here the invariant needs to record the partial results
computed so far as the loop is executed.

At each stage in the loop, the potential divisors have been checked success-
fully up to but not including the current value of d. We use the final assertion

415

as a guide for constructing the invariant that expresses the portion of the
computation completed so far.

Invariant = ([b ≡ ∀ k[2≤k<d ⊃ not ∃ j[k•j = A]]] and n=A≥2 and 2≤d≤n).

The remainder of the proof is left as an exercise.

Exercises

1. Give a deduction that verifies the specification of the following program
fragment:

{ x=A and y=B } z:=x; x:=y; y:=z { x=B and y=A }.

2. Define a proof rule for the repeat command.
{ P } repeat C until B { Q and B }

Use this proof rule to verify the partial correctness of the program seg-
ment shown below:

{ m = A > 0 and n = B ≥ 0 }
p := 1;
repeat

p := p*n; m := m–1
until m = 0

{ p = BA }

3. Prove the partial correctness of the following program for integer multi-
plication by repeated addition.

{ B ≥ 0 }
x := A; y := B; product := 0;
while y > 0 do

product := product+x; y := y–1
end while

{ product = A•B }

4. Prove the partial correctness of this more efficient integer multiplication
program.

{ m = A and n = B ≥ 0 }
x := m; y := n; product := 0;
while y > 0 do

if 2*(y/2) <> y then product := product+x end if;
x := 2*x; y := y/2

end while;
{ product = A•B }

Hint: Consider the two cases where y is even (y = 2k) and y is odd (y =
2k+1). Remember that / denotes integer division.

11.2 AXIOMATIC SEMANTICS FOR WREN

416 CHAPTER 11 AXIOMATIC SEMANTICS

5. Finish the proof of the prime number detection program.

6. The least common multiple of two positive integers m and n, LCM(m,n),
is the smallest integer k such that k=i*m and k=j*n for some integers i
and j. Write a Wren program segment that for integer variables m and n
will set another variable, say k, to the value LCM(m,n). Give a formal
proof of the partial correctness of the program fragment.

7. Provide postconditions for these code fragments and show their partial
correctness.

a) { m = A ≥ 0 }
r := 0;
while (r+1)*(r+1)<=m do r:=r+1 end while

{ Postcondition }

b) { m = A ≥ 0 }
x:=0; odd:=1; sum:=1;
while sum<=m do

x:=x+1; odd:=odd+2; sum:=sum+odd
end while

{ Postcondition }

c) { A ≥ 0 and B ≥ 0 }
sum:=0; m:=A;
while m≥0 do

count := 0;
while count≤B do

sum := sum+1; count := count+1
end while;

m := m–1
end while

{ Postcondition }

8. Write a fragment of Wren code C satisfying the following specification:

{ M≥0 and K≥0 }
C

{ result=bK and M=b0+b1•2+ … +bj•2
j+ … where bj=0 or 1 }.

Prove that the code is partially correct with respect to the specification.

9. Carefully define the substitution operation P[V→E] for the predicate
calculus. Be careful to avoid the problem of free variable capture. See
substitution for the lambda calculus in Chapter 5.

417

10. Supply proofs of partial correctness for the following examples:

a) { N ≥ 0 }
sum:=0; exp:=0; term:=1;
while exp<N do

sum := sum+term; exp := exp+1; term := term*2
end while

{ sum = 2N–1 }

b) { N ≥ 0 and D > 0 }
q:=0; r:=N;
while r>=D do

r := r–D; q := q+1
end while

{ N = q•D+r and 0≤r<D }

c) { true }
k:=1; c:=0; sum:=0;
while sum<=1000 do

sum := sum+k*k; c := c+1; k := k+1
end while

{ “c is the smallest number of consecutive squares
starting at 1 whose sum is greater than 1000” }

d) { N >0 and N is odd }
sum:=1; term:=1;
while term<>N do

term := term+2; sum := sum+2*term–1;
end while

{ sum = N•(N+1)/2 }

e) { true }
sum:=0; term:=1;
while term<10000 do

sum := sum+term; term := 10*term;
end while

{ sum = 1111 }

f) { N ≥ 2 }
k:=N; fact:=1; p:=1;
while k<>1 do

k := k–1; temp := fact;
fact := k*(p+fact); p := p+temp

end while
{ fact = N! }

11.2 AXIOMATIC SEMANTICS FOR WREN

418 CHAPTER 11 AXIOMATIC SEMANTICS

g) { A ≥ 0 and B ≥ 0 }
m := A; n := B; product := 0;
while m<>0 do

while 2*(m/2)=m do
n := 2*n; m := m/2

end while;
product := product+n; m := m–1

end while
{ product = A•B }

11. Suppose Wren has been extended to include an exponentiation opera-
tion ↑. Prove the partial correctness of the following code segment.

{ m = A ≥ 1 }
s := 1; k := 0;
while s < m do

s := s + 2↑k; k := k+1
end while

{ log2 A ≤ k < 1+log2 A }

11.3 AXIOMATIC SEMANTICS FOR PELICAN

Pelican, first introduced in Chapter 9, is an extension of Wren that includes
the following features:

• Declarations of constants, procedures with no parameters, and procedures
with a single parameter.

• Anonymous blocks with a declaration section and a command section.

• Procedure calls as commands.
Figure 11.5 restates the abstract syntax of Pelican.

Now we need to include the declarations in the axiomatic semantics. We
assume that all programs have been checked independently to satisfy all
syntactic rules and that only syntactically valid programs, including those
that adhere to the context sensitive-conditions, are analyzed semantically.
Some restrictions on the choice of identifier names will be introduced so that
our presentation of the axiomatic semantics of Pelican does not become bogged
down with syntactic details.

Since we do not have an underlying model for environments that can differ-
entiate between different uses of the same identifier in different scopes, we
require that all identifiers be named uniquely throughout the program. No
generality is lost by such a restriction since any program with duplicate iden-
tifier names can be transformed into a program with unique names by sys-

419

tematic substitutions of identifier names within the scope of the identifier.
For example, consider the following Pelican program with duplicate identifier
names:

 program squaring is
var x, y: integer;
procedure square(x : integer) is

var y: integer;
begin

y := x * x; write y
end

begin
read x; read y; square(x); square(y)

end

Abstract Syntactic Domains
P : Program C : Command N : Numeral

B : Block E : Expression I : Identifier

D : Declaration O : Operator L : Identifier+

T : Type

Abstract Production Rules
Program ::= program Identifier is Block

Block ::= Declaration begin Command end

Declaration ::= ε| Declaration Declaration

| const Identifier = Expression

| var Identifier : Type | var Identifier Identifier+ : Type

| procedure Identifier is Block

| procedure Identifier (Identifier : Type) is Block

Type ::= integer | boolean

Command ::= Command ; Command | Identifier := Expression

| read Identifier | write Expression | skip | declare Block

| if Expression then Command else Command

| while Expression do Command | Identifier

| if Expression then Command | Identifier(Expression)

Expression ::= Numeral | Identifier | true | false | – Expression

| Expression Operator Expression | not(Expression)

Operator ::= + | – | * | / | or | and | <= | < | = | > | >= | <>

Figure 11.5: Abstract Syntax for Pelican

11.3 AXIOMATIC SEMANTICS FOR PELICAN

420 CHAPTER 11 AXIOMATIC SEMANTICS

The renaming works as follows: The first occurrence of the identifier name
remains unchanged while each other occurrence in a different scope is sys-
tematically substituted with the same name followed by a numeric suffix (1,
2, 3, …, as needed) that makes the name unique. To make sure this substi-
tution does not result in duplication of other declarations, we mark it with a
unique character, such as the sharp sign # shown below, that is not allowed
in the original syntax. Using this scheme, the program given above becomes:

 program squaring is
var x, y: integer;
procedure square(x#1 : integer) is

var y#1: integer;
begin

 y#1 := x#1 * x#1; write y#1
end

begin
read x; read y; square(x); square(y)

end

We inherit all of the axioms from Wren: Assign, Read, Write, Skip, Sequence,
If-Then, If-Else, While, Weaken Postcondition, Strengthen Precondition, And,
and Or. We also need to introduce an alternative form for rules of inference:

H1, H2, ..., Hn |− Hn+1

H
This rule can be interpreted as follows:

If Hn+1 can be derived from H1, H2, ..., Hn, we may conclude H.

Blocks

Although we do not need to retain declaration information for context check-
ing, which we assume has already been performed, we do need a mechanism
for retaining pertinent declaration information, such as constant values, the
bodies of procedure declarations, and their formal parameters, if applicable.
This task is accomplished by two assertions, Procs and Const, which will
depend on the declarations in the program being analyzed. We define Procs
to be a set of assertions constructed as follows:

• If p is a declared parameterless procedure with body B, add body(p) = B to
Procs.

• If p is a declared procedure with formal parameter F and body B, add
parameter(p)=F and body(p)=B to Procs.

Constant declarations are handled by adding an assertion Const such that,
for each declared constant c with value N, Const contains an assertion c = N.

421

For a constant declaration with an arbitrary expression, c = E, the assertion
takes the form c = K where K is the current value of E. In the event that there
are no declared constants, Const ≡ true. With these mechanisms, we can
give an axiomatic definition for a block:

Procs |− { P and Const } C { Q } (Block)

{ P } D begin C end { Q }

Example: Before continuing with the development of other new axiomatic
definitions, we demonstrate how the block rule works for the following anony-
mous block, declare B, with a constant declaration:

declare
constant x = 10;
var y : integer;

begin
read y; y := x + y; write y

end

Suppose we want to prove that

{ IN = [7]L and OUT = [] } B { OUT = [17] }.

Since no procedures are declared, Procs contains no assertions, but Const
contains the assertion x = 10. We must show

{ IN = [7]L and OUT = [] and x = 10 }
read y; y := x + y; write y

{ OUT = [17] }.

The proof proceeds as follows:

{ IN = [7]L and OUT = [] and x = 10 } ⊃
{ IN = [7]L and OUT = [] and x = 10 and 7 = 7 }

read y
{ IN = L and OUT = [] and x = 10 and y = 7 } ⊃
{ IN = L and OUT = [] and x = 10 and x+y = 10+7 }

y := x + y
{ IN = L and OUT = [] and x = 10 and y = 17 }

write y
{ IN = L and OUT = [17] and x = 10 and y = 17 } ⊃
{ OUT = [17] }. ❚

11.3 AXIOMATIC SEMANTICS FOR PELICAN

422 CHAPTER 11 AXIOMATIC SEMANTICS

Nonrecursive Procedures

Pelican requires four separate axiomatic definitions for procedure calls:
nonrecursive calls without and with a parameter and recursive calls without
and with a parameter. Calling a nonrecursive procedure without a parameter
involves proving the logical relation of assertions around the execution of the
body of the procedure. The subscript on the name of the rule indicates no
parameter for the procedure.

{P} B {Q}, body(proc) = B (Call0)

{P} proc {Q}

Example: Consider this anonymous block declare B that squares the exist-
ing value of x:

declare
procedure square is

begin
x := x * x

end
begin

square
end

For this block, Procs is the assertion

body(square) = (x := x * x)

and Const is the true assertion. So, using the Block rule, we need to show

body(square) = (x:= x*x) |− { x = N and true} square {x = N*N }.

The first assertion in the hypothesis of Call0 requires that we prove
{ x = N and true } B { x = N•N }.

Since { P and true } is equivalent to P, using the rule for a procedure invoca-
tion without a parameter, we need to prove

{ x = N } x := x*x { x = N*N }.

Substituting x*x for x in the postcondition, we have { x*x = N*N }. Because we
know {x = N} ⊃ { x*x = N*N }, we strengthen the precondition to obtain the
initial assertion. ❚

If a procedure P has a formal parameter F and the procedure invocation has
an expression E as the actual parameter, we add the binding of F to E in both
the precondition and postcondition to prove the procedure call is correct.

423

{P} B {Q}, body(proc) = B, parameter(proc) = F (Call1)

{ P[F→E] } proc(E) { Q[F→E] }

If we can show the relation {P} B {Q} is true about F where B = body(proc), we
may conclude that the relation { P[F→E] } proc(E) { Q[F→E] } is true about E.

Example: Consider an anonymous block declare B that increments the ex-
isting value of a nonlocal variable x by an amount specified as a parameter:

declare
procedure increment(step : integer) is

begin
x := x + step

end
begin

increment(y)
end

We want to prove { x = M and y = N} B { x = M + N and y = N}.

For this block, Procs contains the conjunction of the assertions
body(increment) = (x := x+step)
parameter(increment) = step,

and Const is the true assertion. We thus need to show

body(increment) = (x:=x+step), parameter(increment) = step

 |− { x=M and y=N and true } increment(y) { x=M+N and y=N }.

We can eliminate the “and true”; then using our rule for a procedure invoca-
tion with parameter, we have to show

{ x = M and step = N }
 x := x + step

{ x = M + N and step = N }

Substituting “x+step” for x in the postcondition, we have

{ x + step = M + N and step = N } ⊃
{ x + N = M + N and step = N } ⊃
{ x = M and step = N }

the desired precondition. Therefore, by the rule Call1, we may conclude
{ x=M and y=N and true } increment(y) { x=M+N and y=N }. ❚

Although not illustrated by the previous example, we must introduce some
restrictions on parameter usage so as to avoid aliasing and thereby proving
false assertions. Neither of these restrictions results in any loss of generality.
Since we want to have parameters passed by value, any changes in the for-

11.3 AXIOMATIC SEMANTICS FOR PELICAN

424 CHAPTER 11 AXIOMATIC SEMANTICS

mal parameter inside the procedure should not be visible outside the proce-
dure. This situation becomes a problem if the actual parameter is a variable.

We avoid the problem by not allowing the formal parameter to change value
inside the procedure command sequence. Any program violating this restric-
tion can be transformed into an equivalent program that obeys the restric-
tion by declaring a new local variable, assigning this variable the value of the
parameter, and then using the local variable in the place of the parameter
throughout the procedure. For example, the code on the left allows the for-
mal parameter f to change value but the corresponding code on the right
permits only a local variable to change value.

procedure p (f : integer) is procedure p (f : integer) is
begin var local#f : integer;

f := f * f; begin
write f local#f := f;

end local#f := local#f * local#f;
write local#f

end

The second restriction requires that if the actual parameter is a variable that
is manipulated globally inside the procedure body, no change is made to the
value of the formal parameter for which it is substituted. The procedure given
below changes two nonlocal variables. We are concerned only with changes
made to the variable x, which happens to be the actual parameter. The con-
straint adds a new variable at the level of invocation, assigning the value of
the “manipulated” variable to the new variable, and passing the new variable
as a parameter. This transformation is illustrated below by altering the vari-
able “x” by appending “new#”in the calling environment and passing “new#x”
as the actual parameter.

procedure q (f : integer) is procedure q (f : integer) is
begin begin

read x; read x;
y := y + f y := y + f

end end
 : :
p(x); new#x := x;

p(new#x);

Exercises at the end of this section provide Pelican programs for which erro-
neous semantics can be proved using the Call1 rule when these transforma-
tions are ignored.

425

Recursive Procedures

Next we discuss recursive procedures without a parameter. Consider the
following procedure that reads and discards all zeros until the first nonzero
value is encountered.

procedure nonzero is
begin

read x;
if x = 0 then nonzero end if

end

We cannot use the rule for a nonrecursive procedure without a parameter
because we will have an endless sequence of applications of the same rule.
To see how to avoid this problem, we use a technique similar to mathemati-
cal induction. Recall that with induction we have to show a base case and to
prove that the proposition is true for n assuming that it is true for n–1. With
recursion, we use a similar approach: We prove that the current call is cor-
rect if we assume that the result from any previous call is correct. The basis
case corresponds to the situation in which the procedure is called, but it
does not call itself again.

{P} proc {Q} |− {P} C {Q}, body(proc) = C (Recursion0)

{P} proc {Q}

Example: For the procedure nonzero given above, suppose that the input file
contains a sequence Z of zero or more 0’s followed by a nonzero value, call it
N, followed by any sequence of values L. We want to prove

{ IN = Z[N]L and Z contains only zeros and N ≠ 0} = P
nonzero

{ IN = L and x = N ≠ 0 } = Q.

To prove the correctness of the procedure call relative to the given specifica-
tion, we need to show the following correctness specification for the body of
the procedure

{ IN = Z[N]L and Z contains only zeros and N ≠ 0 } = P
read x;
if x = 0 then nonzero end if

{ IN = L and x = N ≠ 0 } = Q

where we are allowed to use the recursive assumption when nonzero is called
from within itself. We make an assertion between the read command and the
if command that takes into account two cases: Either x is zero or x is non-
zero.

11.3 AXIOMATIC SEMANTICS FOR PELICAN

426 CHAPTER 11 AXIOMATIC SEMANTICS

In the case that the sequence of zeros is not empty, we can write

Z = [0]Z', where Z' contains zero or more 0’s,

and in the other case, Z is empty. Therefore the precondition P is equivalent to

((IN = [0]Z'[N]L and Z' contains only zeros and N ≠ 0) or (IN = [N]L and N ≠ 0))

Case 1: Z is not empty.

{ IN = [0]Z'[N]L and Z' contains only zeros and N ≠ 0 }
read x

{ IN = Z'[N]L and Z' contains only zeros and N ≠ 0 and x = 0 }.

Case 2: Z is empty.

{ IN = [N]L and N ≠ 0 } read x { IN = L and x =N ≠ 0 }.

Applying the Or rule allows us to conclude the following assertion, called R,
after the read command:

R = ((IN = Z'[N]L and Z' contains only zeros and N ≠ 0 and x = 0)
or (IN = L and x = N≠ 0)).

Using the If-Then rule, we must show:

{ R and x = 0} nonzero { IN = L and x = N ≠ 0 } and
(R and x ≠ 0) ⊃ (IN = L and x = N ≠ 0).

The second assertion holds directly since (R and x ≠ 0) implies the final as-
sertion. The first assertion involving the recursive call simplifies to

{ IN = Z'[N]L and N≠0 and x = 0 } nonzero {IN = L and x = N ≠ 0 }.

This is a stronger precondition than we require, so it suffices to prove:

{ IN = Z'[N]L and N ≠ 0} nonzero { IN = L and x = N ≠ 0 }.

But this is exactly the recursive assertion, {P} nonzero {Q}, which we may
assume to be true (the induction hypothesis), so the proof is complete. ❚

Finally, we consider an inference rule for a recursively defined procedure
with a parameter. The axiomatic definition follows directly from recursion
without a parameter, modified by the changes inherent in calling a proce-
dure with a parameter.

∀ f ({P[F→f]} proc(f) {Q[F→f] }) |−{P} C {Q}, body(proc)=C, parameter(proc)=F

{ P[F→E] } proc(E) { Q[F→E] } (Recursion1)

427

The induction hypothesis allows us to assume the correctness of a recursive
call of the procedure with any expression that satisfies the precondition as
the actual parameter.

Example: To see how this rule works, we prove the correctness of a recur-
sively defined factorial program. Since we do not have procedures that re-
turn values, we depend on a global variable “fact” to hold the current value
as we return from the recursive calls.

procedure factorial(n : integer) is
begin

if n = 0 then fact := 1
else factorial(n–1); fact := n*fact;

end if;
end;

We want to prove

{ num = K ≥ 0 } = P[F→E]
factorial(num)

{ fact = num! and num = K } = Q[F→E], which implies fact = K!.

In the proof below, “num” refers to the original actual parameter (called E in
the rule) and “n” refers to the formal parameter (called F) in the recursive
definition. Substituting the body of the procedure, we must show

{ n = K ≥ 0 } = P
if n = 0 then fact := 1

else factorial(n–1); fact := n*fact;
end if;

{ fact = n! and n = K } = Q

assuming as an induction hypothesis
∀ f({ f = K ≥ 0 } = P[F→f]

factorial(f)
 { fact = f! and f = K } = Q[F→f]).

Case 1: n = 0.
Use the If-Else rule for the case when the condition is true:

{ n = K ≥ 0 and n = 0 } ⊃
{ n = K = 0 and 1 = 0! = K! }

fact := 1
{ n = K = 0 and fact = 0! = n! } ⊃ { fact = n! and n = K }.

11.3 AXIOMATIC SEMANTICS FOR PELICAN

428 CHAPTER 11 AXIOMATIC SEMANTICS

Case 2: n > 0.
The recursive assumption with f=n-1 gives

{ n = K ≥ 0 and n > 0 } ⊃
{ n-1 = K–1 ≥ 0 }

factorial(n-1)
{ fact = (n-1)! and n-1 = K–1 } ⊃
{ fact = (n-1)! }

The Assign rule gives

{ fact = (n-1)! } ⊃
{ n•fact = n•(n–1)! }

fact := n * fact
{ fact = n•(n–1)! = n! }, which is the desired postcondition. ❚

The complete axiomatic definition for Pelican is presented in Figure 11.6.

Assign { P[V→E] } V := E { P }

Read { IN = [K]L and P[V→K] } read V { IN = L and P }

Write { OUT=[L] and E=K and P } write E { OUT= L[K] and E=K and P }

Skip { P } skip { P }

Sequence {P} C1 {Q}, {Q} C2 {R}
{P} C1; C2 {R}

If-Then {P and B} C {Q}, (P and not B) ⊃ Q
{P} if B then C end if {Q}

If-Else {P and B} C1 {Q}, {P and not B} C2 {Q}
{P} if B then C1 else C2 end if {Q}

While {P and B} C {P}
{P} while B do C end while {P and not B}

Block Procs |− { P and Const } C { Q }

{ P } D begin C end { Q }

where for all declarations “procedure I is B” in D,
“body(I) = B” is contained in Procs;

for all declarations “procedure I(F) is B” in D,
“body(I) = B and parameter(I) = F” is contained in Procs; and

Const consists of a conjunction of true and ci = Ei

for each constant declaration of the form “const ci = Ei” in D.

Figure 11.6: Axiomatic Semantics for Pelican (Part 1)

429

Call without Parameter (Call0)

{P} B {Q}, body(proc) = B

{P} proc {Q}

Call with Parameter (Call1)

{P} B {Q}, body(proc) = B, parameter(proc) = F

{ P[F→E] } proc(E) { Q[F→E] }

Recursion without Parameter (Recursion0)

{P} proc {Q} |− {P} B {Q}, body(proc) = B

{P} proc {Q}

Recursion with Parameter (Recursion1)

∀ f({P[F→f]} proc(f){Q[F→f]}) |−{P} B{Q}, body(proc)=B, parameter(proc)=F

{ P[F→E] } proc(E) { Q[F→E] }

Weaken {P} C {Q}, Q ⊃ R
Postcondition {P} C {R}

Strengthen P ⊃ Q, {Q} C {R}
Precondition {P} C {R}

And {P} C {Q}, {P'} C {Q'}
{P and P'} C {Q and Q'}

Or {P} C {Q}, {P'} C {Q'}
 {P or P'} C {Q or Q'}

Figure 11.6: Axiomatic Semantics for Pelican (Part 2)

Exercises

1. Prove that the following two program fragments are semantically equiva-
lent, assuming the declaration of the procedure increment given in this
section.

read x; read x;
write x increment(-4);

increment(1);
increment(3);
write x

2. Give an example where an invalid assertion can be proved if we allow
duplicate identifiers to occur at different levels of scope.

11.3 AXIOMATIC SEMANTICS FOR PELICAN

430 CHAPTER 11 AXIOMATIC SEMANTICS

3. Prove that the following procedure copies all nonzero values from the
input file to the output file up to, but not including, the first zero value.

procedure copy is
var n : integer;
begin

read n; if n ≠ 0 then write n; copy end if
end

4. Prove that the procedure “power” raises a to the power specified by the
parameter value and leaves the result in the global variable product.

procedure power(b: integer) is
begin

if b = 0 then product := 1
else power(b – 1); product := product * a

end if
end

5. Prove the partial correctness of this program relative to its specification.

{ B ≥ 0 }
program multiply is

var m,n : integer;
procedure incrementm(x : integer) is

begin m := m+x end;
begin

m := 0; n := B;
while n>0 do

incrementm(A); n := n – 1
end while

end
{ m = A•B }

6. Consider the following procedure:

procedure outputsequence(n: integer) is
begin

if n > 0 then write n; outputsequence(n–1) end if
end

Prove that
{val = A ≥ 0 and OUT = []}

outputsequence(val)
{OUT = [A, A-1, A-2, ... , 2, 1]}

7. Modify outputsequence in problem 6 so that it outputs values from 1 up
to A. Prove the procedure correct.

431

8. Prove the partial correctness of the following Pelican program:

{ K≥0 and IN = [K] and OUT = [] }
program recurrence is

var num,ans : integer;
procedure fun(m : integer) is

var temp : integer;
begin

if m = 0
then ans := 1
else temp := 2*m+1; fun(m–1); ans := ans + temp

end if
end;

begin
read num; fun(num); write ans

end

{ OUT = [(K+1)2] }

9. Illustrate the need for the transformation of procedures with a param-
eter that is changed in the body of the procedure by proving the spuri-
ous “correctness” of the following code using the Call1 rule:

{ OUT = [] }
program problem1 is

var a : integer;
procedure p (b : integer) is

begin b := 5 end;
begin

a := 21; p(a); write a
end

{ OUT = [5] }

10. Justify the need for the transformation of a one parameter procedure
that makes a nonlocal change in the actual parameter by proving the
spurious “correctness” of the following code using the Call1 rule:

{ OUT = [] }
program problem2 is

var m : integer;
procedure q (f : integer) is

begin m := 8 end;
begin

m := 55; q(m); write m
end

{ OUT = [55] }

11.3 AXIOMATIC SEMANTICS FOR PELICAN

432 CHAPTER 11 AXIOMATIC SEMANTICS

11. Show what modifications will have to be made to the axiomatic defini-
tions of Pelican to allow for procedures with several value parameters.

11.4 PROVING TERMINATION

In the proofs studied so far, we have considered only partial correctness,
which means that the program must satisfy the specified assertions only if it
ever halts, reaching the final assertion. The question of termination is fre-
quently handled as a separate problem.

Termination is not an issue with many commands, such as assignment,
selection, input/output, and nonrecursive procedure invocation. That these
commands must terminate is contained in their semantics. Two language
constructs require proofs of termination:

• Indefinite iteration (while)

• Invocation of a recursively defined procedure

The first case can be handled as a consequence of (well-founded) induction
on an expression that is computed each pass through the loop, and the sec-
ond can be managed by induction on some property possessed by each re-
cursive call of the procedure.

Definition: A partial order > or ≥ on a set W is well-founded if there exists no
infinite decreasing sequence of distinct elements from W. ❚

This means that given a sequence of elements {xi | i ≥ 1} from W such that
x1 ≥ x2 ≥ x3 ≥ x4 ≥ …, there must exist an integer k such that ∀ i,j≥k, xi = xj.

If the partial order is strict, meaning that it is irreflexive, any decreasing
sequence must have only distinct elements and so must be finite.

Examples of Well-founded Orderings

1. The natural numbers N ordered by >.

2. The Cartesian product NxN ordered by a lexicographic ordering defined
as: <m1,m2> > <n1,n2> if ([m1 > n1] or [m1 = n1 and m2 > n2]).

3. The positive integers, P, ordered by the relation “properly divides”:
m > n if (∃ k[m = n•k] and m≠n).

433

Steps in Showing Termination

With indefinite iteration, termination is established by showing two steps:

1. Find a set W with a strict well-founded ordering >.

2. Find a termination expression E with the following properties:

a) Whenever control passes through the beginning of the iterative loop,
the value of E is in W.

b) E takes a smaller value with respect to > each time the top of the
iterative loop is passed.

In the context of a while command—for example, “while B do C end while”
with invariant P—the two conditions take the following form:

a) P ⊃ E∈ W

b) { P and B and E=A } C { A > E }.

Example: Consider the following program that calculates the factorial of a
natural number:

read n;
k := 0; f := 1;
while k < n do

k := k + 1; f := k * f
end while;
write f

Take W = N, the set of natural numbers, as the well-founded set and E =
n – k as the termination expression. Therefore, m∈ W if and only if m ≥ 0.
The loop invariant P is

 (n ≥ 0 and k ≤ n and f = k! and OUT = []).

The conditions on the termination expression must hold at the top of the
while loop where the invariant holds.

The two conditions follow immediately:

a) (n ≥ 0 and k ≤ n and f = k! and OUT = []) ⊃ (n – k ≥ 0)

b) { n ≥ 0 and k ≤ n and f = k! and OUT = [] and k < n and n – k = A } ⊃
{ n – (k + 1) = A – 1 }

k := k + 1; f := k * f
{ n – k = A – 1 < A } ❚

11.4 PROVING TERMINATION

434 CHAPTER 11 AXIOMATIC SEMANTICS

Example: As another example, consider the program with nested loops from
section 11.2.

read x;
m := 0; n := 0; s := 0;
while x > 0 do

x := x–1; n := m+2; m := m+1;
while m > 0 do

m := m–1; s := s+1
end while;
m := n

end while;
write s

With nested loops, each loop needs its own termination expression. In this
example, they share the natural numbers as the well-founded set. The termi-
nation expressions can be defined as follows:

• For the outer loop: Eo = x

• For the inner loop: Ei = m

The code below shows the loop invariants used to verify that the termination
expressions are adequate.

read x;
m := 0; n := 0; s := 0;
while x>0 do { x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 }

x := x–1; n := m+2; m := m+1;
while m>0 do { x≥0 and n=2(A–x) and m≥0

m := m–1; s := s+1 and n≥0 and m+s=(A–x)2 }
end while;
m := n

end while;
write s

We leave the verification that the expressions Eo and Ei defined above satisfy
the two conditions needed to prove termination as an exercise at the end of
this section. ❚

Note that the termination expression method described above depends on
identifying some loop control “counter” that cannot change forever.

435

Termination of Recursive Procedures

A procedure defined recursively contains the seeds of an induction proof for
termination, if only a suitable property about the problem can be identified
on which to base the induction.

Example: Consider a Pelican procedure to read and write input values until
the value zero is encountered.

procedure copy is
var n: integer;
begin

read n;
if n ≠ 0 then write n; copy end if

end

This procedure terminates (normally) only if the input stream contains the
value zero. For a particular invocation of the procedure “copy”, the depth of
recursion depends on the number of nonzero integers preceding the first
zero. We describe the input stream as IN = L1[0]L2 where L1 contains no zero
values.

Lemma: Given input of the form IN = L1[0]L2 where L1 contains no zero
values, the command “copy” halts.

Proof: By induction on the length of L1, leng(L1).

Basis: leng(L1)=0.
Then the input list has the form IN = [0]L2, and after “read n”, n=0.
Calling copy causes execution of only the code

read n;
which terminates.

Induction Step: leng(L1)=k>0.
As an induction hypothesis, assume that copy halts when
leng(L1)=k–1≥0. Then copy causes the execution of the code

read n;
write n;
copy

which terminates because for this inner copy, leng(L1)=k–1. ❚

The complete proof of correctness of the procedure copy is left as an exercise.

11.4 PROVING TERMINATION

436 CHAPTER 11 AXIOMATIC SEMANTICS

Exercises

1. Formally prove that the factorial program in section 11.2 terminates.
What happens to the termination proof if we remove the precondition
N≥0?

2. Prove that the following program terminates. Also show partial correct-
ness.

{ A ≠ 0 and B ≥ 0 }
m := A; n := B; k := 1;
while n > 0 do

if 2*(n/2) = n
then m := m*m; n := n/2
else n := n–1; k := k*m

end if
end while

{ k = AB }

3. For the nested loop problem in this section, verify that the expressions
Eo and Ei satisfy the two conditions needed to prove termination.

4. Prove that the following program terminates. Also show partial correct-
ness.

{ A≥0 and B≥0 and (A≠0 or B≠0) }
m := A; n := B;
while m > 0 do

if m ≤ n then n := n–m
else x := m; m := n; n := x

end if
end while

{ n is the greatest common divisor of A and B }

Verify each of the following termination expressions:

• E1 = <m,n> with the lexicographic ordering on NxN.

• E2 = 2m+n with the “greater than” ordering on N.

5. Prove the termination of the prime number program at the end of sec-
tion 11.2.

6. Prove the termination of the program fragments in exercise 10 of sec-
tion 11.2.

437

11.5 INTRODUCTION TO PROGRAM DERIVATION

In the first three sections of this chapter we started with programs or proce-
dures that were already written, added assertions to the programs, and proved
the assertions to be correct. In this section we apply axiomatic semantics in
a different way, starting with assertions that represent program specifica-
tions and then deriving a program to match the assertions.

Suppose that we want to build a table of squares where T[k] contains k2. A
straightforward approach is to compute k*k for each k and store the values
in the table. However, multiplicative operations are inherently inefficient com-
pared with additive operations, so we ask if this table can be generated using
addition only. Actually this problem is not difficult; an early Greek investiga-
tion of “square” numbers provides a solution. As indicated by the table be-
low, each square is the sum of consecutive odd numbers.

Square Summation
1 1
4 1 + 3
9 1 + 3 + 5

16 1 + 3 + 5 + 7
25 1 + 3 + 5 + 7 + 9

The algorithm follows directly.

Table of Cubes

We now propose a slight variation of this problem: Construct a table of cubes
using only additive methods. Given the ease of the solution for the table of
squares, it may seem that we can find the answer quickly with just a little
thought by playing with the numbers, but this problem turns out to be non-
trivial. During a SIGCSE tutorial, David Gries reported that he assigned this
problem to an advanced class in computer science and, even given several
weeks, no one was able to come up with a correct solution. However, a solu-
tion can be produced directly if the techniques of program derivation are
used.

We start with the final assertion that expresses the result of our program:

{ T[k] = k3 for all 0 ≤ k ≤ N }.

We build the table from the zeroth entry through the Nth entry, so for any
particular value m ≤ N+1, we know that all preceding table entries have been
generated. This property becomes part of the loop invariant:

11.5 INTRODUCTION TO PROGRAM DERIVATION

438 CHAPTER 11 AXIOMATIC SEMANTICS

{ T[k] = k3 for all 0 ≤ k < m }.

The value of m will increase until it reaches N+1, at which time the loop
terminates. This condition gives us the other part of the loop invariant:

{ 0 ≤ m ≤ N+1 }.

We now have enough information to begin writing the program, starting with
a skeleton describing the structure of the program.

m := 0;
while m < N + 1 do { T[k] = k3 for all 0 ≤ k < m and 0 ≤ m ≤ N+1 }

T[m] := ???
 : :
m := m + 1

end while
 { T[k] = k3 for all 0 ≤ k ≤ N }.

We introduce a new variable x whose value is assigned to T[m] each time the
loop executes, adding to our loop invariant the requirement that x = m3.
Since x can only be changed by addition, we introduce another variable y
and the assignment command x := x + y. The new value of x in the next
iteration has to be (m+1)3, so we have

x + y = (m+1)3 = m3 + 3m2 + 3m + 1.

But we already have in our loop invariant the requirement that x = m3, so
this means that y = 3m2 + 3m + 1 must be added to the loop invariant. Since
m is initially zero, this means the initial values for x and y are 0 and 1,
respectively. Here is the derived program so far.

m := 0;
x := 0;
y := 1;
while m < N + 1 do { T[k] = k3 for all 0 ≤ k < m and 0 ≤ m ≤ N+1

and x = m3 and y = 3m2 + 3m + 1 }
T[m] := x;
x := x + y;
 : :
m := m + 1

end while
 { T[k] = k3 for all 0 ≤ k ≤ N }.

The variable y can change only by addition, so we introduce a new variable z
and the assignment y := y + z. The next time through the loop, m is incremented
by one so that value of y must become

3(m + 1)2 + 3(m + 1) + 1 = 3m2 + 9m + 7.

439

But this new value equals y + z, so

y + z = 3m2 + 9m + 7.

If we subtract the invariant y = 3m2 + 3m + 1 from this equation, we end up
with the requirement

z = 6m + 6,

which is added to the invariant. This relationship also means that z must be
initialized to 6. So the code now becomes

m := 0;
x := 0;
y := 1;
z := 6;
while m <> N + 1 do { T[k] = k3 for all 0 ≤ k < m and 0 ≤ m ≤ N+1

and x = m3

T[m] := x; and y = 3m2 + 3m + 1
x := x + y; and z = 6m + 6 }
y := y + z;
 : :
m := m + 1

end while
 { T[k] = k3 for all 0 ≤ k ≤ N }.

The next time through the loop, the new value of z must equal

6(m + 1) + 6 = 6m + 6 + 6 = (old value of z) + 6.

This equality tells us that z must be incremented by 6 each time through the
loop, and therefore the computation meets the requirement of consisting of
additive operations. So now we have the complete program.

m := 0;
x := 0;
y := 1;
z := 6;
while m < N + 1 do { T[k] = k3 for all 0 ≤ k < m and 0 ≤ m ≤ N+1

and x = m3

T[m] := x; and y = 3m2 + 3m + 1
x := x + y; and z = 6m + 6 }
y := y + z;
z := z + 6;
m := m + 1

end while
 { T[k] = k3 for all 0 ≤ k ≤ N }

11.5 INTRODUCTION TO PROGRAM DERIVATION

440 CHAPTER 11 AXIOMATIC SEMANTICS

In the event that this formal derivation does not offer convincing enough
proof that the above program works as expected, we present a small table of
values following the algorithm.

m x y z
0 0 1 6
1 1 7 12
2 8 19 18
3 27 37 24
4 64 61 30

Binary Search

The example above illustrates the technique of program derivation to pro-
duce a simple program, but it is tempting to ask if program derivation tech-
niques can generate “really useful” programs. We conclude this section with
the derivation of a binary search algorithm, an algorithm commonly pre-
sented in the study of data structures. We assume the following precondition
for the sorted array A:

{ A[0..N] is a sequence of integers such that
A[i] ≤ A[i+1] for all 0 ≤ i < N and x is an integer and A[0] ≤ x < A[N] }.

We want to determine if there exists at least one i such that 0 ≤ i < N and x =
A[i]. However, x may not be present so we cannot require x = A[i] as part of
the postcondition. Specifying the postcondition takes some insight. Notice
that the precondition specifies that x be contained in the interval [A[0], A[N]),
where [m,n) indicates an interval defined by the set { k | m≤k<n }. The basic
idea will be to narrow that interval continually until it contains only a single
element. We specify this by using indices i and j for the interval limits and
requiring that ultimately j = i + 1. So the postcondition is

{ A[i] ≤ x < A[j] and j = i + 1 }.

The test determining whether A[i] = x is made independently of this algo-
rithm, but we will be able to guarantee that if A[i] ≠ x then x is not present
anywhere in [A[0], A[N]).

The basic idea of the algorithm is that the subinterval [A[i],A[j]) becomes
smaller and smaller, yet always contains x, until the postcondition is satis-
fied. We can now start construction of our program based on the following
observations:

• The loop invariant is A[i] ≤ x < A[j].

• The loop will repeat until j = i+1, so the loop entry condition is j ≠ i+1.

441

• The loop invariant is implied by the precondition if we set i to 0 and
j to N.

Here is the initial program framework:

 { A[0..N] is a sequence of integers such that
A[i] ≤ A[i+1] for all 0 ≤ i < N and x is an integer and A[0] ≤ x < A[N} }

i := 0;
j := N;
while j ≠ i + 1 do { A[i] ≤ x < A[j] }

 : : :
end while

 { A[i] ≤ x < A[j] and j = i + 1 }

We make the interval [A[i],A[j]) shrink by either increasing i or decreasing j.
Suppose that we divide the interval “in half” by introducing the variable k =
(i + j)/2, using integer division. Now x either lies in the interval [A[i],A[k]) or
the interval [A[k],A[j]). It should be pointed out that x might lie in both inter-
vals if A contains duplicate copies of x. However, in this case it does not
matter which subinterval is chosen since both satisfy the loop invariant, and
our algorithm requires only that we find one index, even though several may
exist. If x < A[k], then setting j to k maintains the loop invariant. Otherwise
A[k] ≤ x and setting i to k maintains the loop invariant. Here is the completed
algorithm.

 { A[0..N] is a sequence of integers such that
A[i] ≤ A[i+1] for all 0 ≤ i < N and x is an integer and A[0] ≤ x < A[N] }

i := 0;
j := N;
while j ≠ i + 1 do { A[i] ≤ x < A[j] }

k := (i + j) / 2;
if x < A[k] then j := k

else i := k
end if

end while
 { A[i] ≤ x < A[j] and j = i + 1 }

Exercises

1. Derive a program that constructs a table with T[k] = k4, using only addi-
tive methods. This is similar to the table of cubes example except that
four new variables have to be introduced with four assignment com-
mands changing the values of these variables by addition.

11.5 INTRODUCTION TO PROGRAM DERIVATION

442 CHAPTER 11 AXIOMATIC SEMANTICS

2. Suppose that N is a fixed integer greater than or equal to zero (so the
precondition is { N ≥ 0 }). Derive a program to find the integer square root
of N. The integer square root is the largest integer that is less than or
equal to the square root of N. This can be expressed as the postcondition:

 { a ≥ 0 and 0 ≤ a2 and a2 ≤ N and N < (a + 1)2 }

Hint: Use two variables, a and b, initialized to 0 and N+1, respectively. As
in the binary search problem, find the midpoint of a and b and change
one of the values until the desired subinterval is found.

11.6 FURTHER READING

The original idea of verifying the correctness of a program using the tech-
niques of logic first appears in papers by Robert Floyd [Floyd67] and C. A. R.
Hoare [Hoare69]. These papers still serve as excellent introductions to axi-
omatic semantics. An early application of this method to programming lan-
guage specification can be found in the definition of Pascal in [Hoare73].

The books dealing with the analysis of programs and languages in the frame-
work of the predicate logic can be divided into two groups:

• Books that develop axiomatic methods primarily to prove the correctness
of programs as a tool of software engineering [Alagic78], [Backhouse86],
[Francez92], [Gries81], and [Gumb89]. These authors concentrate on de-
scribing techniques of program construction and verification based on the
predicate logic. The discussion of program derivation in section 11.5 falls
into this classification. A book on program derivation by Geoff Dromey
[Dromey89] gives numerous examples of this approach to program con-
struction. The related method of “weakest precondition” is discussed in
[Dijkstra76].

• Books that view axiomatic methods as a means of programming language
definition [Meyer90], [Nielson92], [Pagan81], [Tennent91], and [Winskel93].
Although correctness is discussed in these books, the emphasis is on us-
ing logic to specify the semantics of programming languages in a manner
similar to the presentation of Wren and Pelican in this chapter.

For a review of predicate logic see [Enderton72], [Mendelson79], or [Reeves90].

