
Semidefinite Programming

for Graph Partitioning with Preferences
in Data Distribution

Suely Oliveira1, David Stewart2, and Takako Soma1

1 The Department of Computer Science, The University of Iowa
Iowa City, IA 52242, USA

{oliveira,tsoma}@cs.uiowa.edu
2 The Department of Mathematics, The University of Iowa

Iowa City, IA 52242, USA
dstewart@math.uiowa.edu

Abstract. Graph partitioning with preferences is one of the data dis-
tribution models for parallel computer, where partitioning and mapping
are generated together. It improves the overall throughput of message
traffic by having communication restricted to processors which are near
each other, whenever possible. This model is obtained by associating to
each vertex a value which reflects its net preference for being in one par-
tition or another of the recursive bisection process. We have formulated
a semidefinite programming relaxation for graph partitioning with pref-
erences and implemented efficient subspace algorithm for this model. We
numerically compared our new algorithm with a standard semidefinite
programming algorithm and show that our subspace algorithm performs
better.

1 The Graph Partitioning Problem and Parallel Data
Distribution

Graph partitioning is universally employed in the parallelization of calculations
on unstructured grids, such as finite element and finite difference calculations,
whether using explicit or implicit methods. Once a graph model of a computation
is constructed, graph partitioning can be used to determine how to divide the
work and data for efficient parallel computation. The goal of the graph partition-
ing problem is to divide a graph into disjoint subgraphs subject to the constraint
that each subgraph has roughly equal number of vertices, and with the objective
of minimizing the number of edges that are cut by the partitionings. In many cal-
culations the underlying computational structure can be conveniently modeled
as a graph in which vertices correspond to computational tasks and edges reflect
data dependencies. The objectives here are to evenly distribute the computa-
tions among the processors while minimizing interprocessor communication, so
that the corresponding assignment of tasks to processors leads to efficient execu-
tion. Therefore, we wish to divide the graph into subgraphs with roughly equal

J.M.L.M. Palma et al. (Eds.): VECPAR 2002, LNCS 2565, pp. 703–716, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

704 Suely Oliveira et al.

numbers of nodes with the minimum number of edges crossing between the sub-
graphs. Graph partitioning is an NP-hard problem [7]. Therefore, heuristics need
to be used to get approximate solutions for these problems.

The graph partitioning problem for high performance scientific computing
has been studied extensively over the past decades. The standard approach is
to use Recursive Bisection [9, 21]. In Recursive Bisection, the graph is broken
in half, the halves are halved independently, and so on, until there are as many
pieces as desired.

The justification for traditional partitioning is that the number of edges cut
in a partition typically corresponds to the volume of communication in the paral-
lel application. Since communication is an expensive operation, minimizing this
volume is extremely important in achieving high performance. In traditional re-
cursive partitioning, after each step in a recursive decomposition the subgraphs
are decoupled and interact no further. An edge crossing between two sets does
not affect the later partitioning of either set. Consequently, there is nothing
preventing the two adjacent vertices from being assigned to processors that are
quite far from each other. A message between distant processors must traverse
many wires, which are therefore rendered unavailable to transmit other mes-
sages. Conversely, if each message consumes only a small number of wires, more
messages can be sent at once. In parallel computing, messages traveling between
architecturally distant processors should be minimized by improving the data
locality, since they tie up many communication links. Therefore, a good map-
ping is one that reduces message congestion and thereby preserves communica-
tion bandwidth. Many scientific computing applications of interest, for example
those employing an iterative sparse solver kernel, have a structure in which many
messages simultaneously compete for limited communication bandwidth. Good
mappings are especially important in these cases.

Recently, Hendrickson et al. [8, 9, 11] pointed out problems with traditional
models. Assume we have already partitioned the graph into left and right halves,
and that we have similarly divided the left-half graph into top and bottom quad-
rants (see Figure 1). When partitioning the right-half graph between processors
3 and 4, we want the messages to travel short distances. The mapping shown in
the left-hand of Figure 1 is better since the total message distance is less than
that for the right-hand figure.

These models are obtained by associating to each vertex a value which reflects
its net preference for being in one subgraph or another. Note that this preference
is a function only of edges that connect the vertex to vertices which are not
in the current subgraph. These preferences should be propagated through the
recursive partitioning process. If the graph partitioning problem with preferences
is relaxed as is done to obtain spectral graph partitioning, we obtain an extended
eigenproblem: Find the minimum µ for which there is a y �= 0 satisfying Ay =
µy + g with a specified norm [11].

In [18] we developed subspace methods to solve extended eigenproblems.
In [19] we have developed a subspace algorithm for a SDP of the original graph
partitioning. In this paper we will develop a semidefinite program for graph

SDP for Graph Partitioning with Preferences in Data Distribution 705

processor 4

processor 1

processor 2

processor 3

processor 4

processor 1 processor 3

processor 2

Fig. 1. Partition between the 4 processors

partitioning with preferences and present an efficient subspace algorithm for this
model.

2 Spectral Graph Patitioning and Semidefinite
Programming

Like combinatorial methods, spectral methods have proven to be effective for
large graphs arising from FEM discretizations [21]. Software packages that use
spectral methods combined with combinatorial algorithms include METIS [15],
Chaco [10], JOSTLE [31], PARTY [22], and SCOTCH [20]. The spectral algo-
rithms which are used in these packages are based on models that partition
a graph by finding an eigenvector associated with the second smallest eigenvalue
of its graph Laplacian matrix using an iterative method. This eigenvector model
is used in [12, 13] for example.

Another approach to get better approximation of the graph partitioning
problem is semidefinite programming. It gives tighter relaxations to the orig-
inal graph partitioning problem than does spectral graph partitioning, leading
to better partitionings.

The semidefinite programming problem [1, 24, 29] is the problem of min-
imizing a linear function over symmetric matrices with linear constraints and
the constraint that the matrix is symmetric positive semi-definite. Semidefinite
programming reduces to linear programming when all the matrices are diagonal.
Currently there are various software packages for solving semidefinite programs
available using interior-point algorithms, such as CSDP [4], SDPA [6], SDP-
pack [2], SDPT3 [28], SP [30], and a Matlab toolbox by Rendl [23]. Semidefinite
programming relaxation technique for equal-partitioning problem has been de-
veloped in [14]. In the next section we develop an SDP relaxation for the GP
problem with preferences. In Section 4 we present an efficient algorithm for the
new model of Section 3

706 Suely Oliveira et al.

3 A Semidefinite Programming Model of the Graph
Partitioning Problems with Preferences

The graph partitioning with preferences (GP/P) problem is as follows: Given
an undirected graph G = (V,E) and a preference vector d = [di|i ∈ V], and
if a partition is represented by a vector x where xi ∈ {−1, 1} depending on
whether xi belongs to set P1 or P2,

min
x

1
4

∑
{i,j}∈E

(xi − xj)2 − 1
2

∑
i∈V

dixi = min
x

1
4
xTLx− 1

2
dTx

Subject to (a) xi = ±1, ∀i
(b)

∑
i∈V

xi ≈ 0,

where L is the graph Laplacian matrix. A straight forward way of approximating
this problem is by using the following relaxation:

min
x

1
4
xTLx− 1

2
dTx

Subject to (a) xTx = n
(b) eTx = 0,

where e is the vector of all ones.
The above relaxation replaces constraint (a) xi = ±1, ∀i with

∑
i x

2
i =

xTx = n, where n = |V |. A subspace algorithms for solving this extended
eigenvalue relaxation was developed in [18]. In this paper we will develop a new
semidefinite programming relaxation for the GP/P problem. This development
is based on the following theorem which shows that the GP/P problem above
can be rewritten as a semi-definite programming with a rank one constraint. An
SDP relaxation can then be obtained by dropping the rank one constraint. In
order to efficiently solve the SDP, we use a subspace approach.

Theorem 1. The GP/P

min
x

1
4
xTLx− 1

2
dTx

Subject to (a) xi = ±1, ∀i
(b)

∑
i∈V

xi = 0
(1)

is equivalent to

min
X̃

X̃ • 1
4

(
0 −dT

−dT L

)

Subject to (a) X̃ � 0
(b) ξ = 1
(c) diag(X) = e
(d) X • (eeT) = 0
(e) rank(X) = 1,

(2)

SDP for Graph Partitioning with Preferences in Data Distribution 707

where X̃ =
(
ξ uT

u X

)
, and the solution to (2) is X̃ =

(
1 xT

x xxT

)
, where x is the

solution of (1).

Proof:

(i) If x solves (1), then for X̃ =
(

1 xT

x xxT

)
, the constraints are: X̃ � 0,

diag(xxT) = [x2
i |i ∈ V] = e, and X • (eeT) = tr(XeeT) = tr(xxT eeT) =

tr(eTxxT e) = (eTx)2 = 0. Since

X̃ • 1
4

(
0 −dT

−dT L

)
=

(
1 xT

x xxT

)
• 1

4

(
0 −dT

−d L

)

=
1
4

tr
(−xTd −dT + xTL
−xxT d xxTL− xdT

)

=
1
4

(tr(xxTL) − 2dTx)

=
1
4
L • xxT − 1

2
dTx

=
1
4
xTLx− 1

2
dTx,

we have X̃ • 1
4

(
0 −dT

−dT L

)
= 1

4x
TLx − 1

2d
Tx, so the value of (2) is less than

or equal to the value of (1).

(ii) On the other hand, suppose X̃ =
(
ξ uT

u X

)
solves (2). Since rank(X) = 1,

and X � 0, X = zzT for some z. Also ξ = 1, so

X̃ =
(

1 uT

u zzT

)
� 0.

By taking one step of Cholesky factorization, we see that X̃ is positive semidef-
inite if and only if

zzT − uuT � 0.

If we write u = βz + w, where w ⊥ z, then,

wT (zzT − uuT)w = wT (zzT − (βz + w)(βz + w)T)w
= wT (zzT − (β2zzT + βzwT + βwzT + wwT))w
= wT (zzT − β2zzT − βzwT − βwzT − wwT)w
= wT (−wwT)w
= −(wTw)2 ≥ 0.

So, w = 0. Therefore, u = βz. Then,

zzT − uuT = zzT − (βz)(βz)T

= zzT − β2zzT

= (1 − β2)zzT � 0

708 Suely Oliveira et al.

is equivalent to |β| ≤ 1, provided z �= 0. If z = 0, then zzT − uuT � 0, implies
u = 0. In either case, u = βz, where |β| ≤ 1.

Since X̃ minimizes X̃ • 1
4

(
0 −dT

−dT L

)
over the constraints in (2), and the

only constraint in (2) involving u is X̃ � 0 (which we just showed is equivalent to
u = βz, where |β| ≤ 1). We can then rewrite the problem in terms of variable z
in the following way

min
u

X̃ • 1
4

(
0 −dT

−d L

)
= min

u

(
1 uT

u zzT

)
• 1

4

(
0 −dT

−d L

)

= min
u

1
4

tr
(−uTd −dT + uTL
−zzTd −udT + zzTL

)

= min
u

1
4

(tr(zzTL) − 2dTu)

= min
u

1
4
L • zzT − 1

2
dTu

= min
u

1
4
zTLz − 1

2
dTu

Subject to (a) u = βz
(b) |β| ≤ 1.

This minimum value is

min
−1≤β≤+1

1
4
zTLz − 1

2
βdT z =

1
4
zTLz − 1

2
|dT z|.

We can assume without loss of generality that dT z ≥ 0, since if we change the
sign of z then X = zzT is unchanged. So, this minimum value over u is

1
4
zTLz − 1

2
dT z.

Furthermore, the optimal choice of u is u = z. So the value of (2) is

min
z

1
4
zTLz − 1

2
dT z

Subject to (a) diag(zzT) = e
(b) (zzT) • (eeT) = 0,

which is,

min
z

1
4
zTLz − 1

2
dT z

Subject to (a) z2
i = 1, ∀i

(b) eT z = 0.

Therefore, the value of (2) is

min
z

1
4
zTLz − 1

2
dT z

Subject to (a) zi = ±1, ∀i
(b)

∑
i∈V

zi = 0.

SDP for Graph Partitioning with Preferences in Data Distribution 709

So, the minimum value of (2) is the minimum value of (1), and the solutions are
related by X = xxT and u = x. ✷

The semidefinite programming relaxation removes the constraint
rank(X) = 1:

min
X̃

X̃ • 1
4

(
0 −dT

−dT L

)

Subject to (a) X̃ � 0
(b) ξ = 1
(c) diag(X) = e
(d) X • (eeT) = 0,

where X̃ =
(
ξ uT

u X

)
. To obtain the resulting partition, use the u vector from X̃

just as the Fiedler vector is used in spectral graph partitioning.
Constraints (b) and (c) can be combined together as diag(X̃) = e, where e

is now a vector of length n + 1. Therefore,

min
X̃

X̃ • 1
4

(
0 −dT

−dT L

)

Subject to (a) X̃ � 0
(b) diag(X̃) = 1
(c) X • (eeT) = 0,

It is easily shown that for the particular case when the graph partitioning
problem is assumed without preferences (i.e. d = 0), the above SDP relaxation
corresponds to the SDP relaxation of graph partitioning in [19].

4 Solving the New SDP Relaxation Efficiently

While solving semidefinite programs is believed to be a polynomial time problem,
current algorithms typically take Ω(n3) time and Ω(n2) space, making them
impractical for realistic data distribution problems. This makes the development
of efficient algorithms important.

Subspace methods build sequences of subspaces that are used to compute ap-
proximate solutions of the original problem. They have been previously used to
solve systems of linear equations [16] and to compute eigenvalues and eigenvec-
tors [3]. Of the methods for eigenvalues, the Lanczos and Arnoldi methods use
Krylov subspaces (generated using a single matrix and a starting vector), while
Davidson-type methods (Generalized Davidson [25], Jacobi–Davidson [26]) use
Rayleigh matrices. Theoretical studies of the Krylov subspace methods are well-
known in the numerical analysis community, but they have only recently been
developed for Davidson-type methods [5, 17]. Davidson-type subspace methods
have been applied to spectral graph partitioning [12, 13].

A subspace algorithm for the SDP relaxation of the spectral partitioning
model was developed in [17]. Below we describe a subspace algorithm for the

710 Suely Oliveira et al.

semidefinite programming relaxation described above, in order to efficiently find
high-quality solutions to the graph partitioning problem with preferences.

min
X̃

X̃ • 1
4

(
0 −dT

−d L

)

Subject to (a) X̃ � 0
(b) ξ = 1
(c) diag(X) = e
(d) X • (eeT) = 0,

where X̃ =
(
ξ uT

u X

)
. We define the operator A by A(X̃)i = Ai • X̃ =

trace(AiX̃) for i = 1, 2, . . . ,m where each Ai is an (n + 1) × (n + 1) ma-

trix: A1 =
(

0 0
0 eeT

)
, A2 = diag(1, 0, 0, . . . , 0), A3 = diag(0, 1, 0, . . . , 0),

. . ., Am = diag(0, 0, 0, . . . , 1), where m = n + 2. Now consider the vector
a = (a1, a2, a3, . . . , am+1)T = (0, 1, 1, . . . , 1)T Note that A1 • X̃ = a1 ensures
that (d) X • (eeT) = 0; A2 • X̃ = a2 ensures that (b) ξ = 1; and A3 • X̃ = a3,
. . ., Am • X̃ = am ensures that (c) diag(X) = e.

Notice that the subspace framework here is similar to that of [17], the input
data for the subspace SDP being the main difference. Below we present the main
steps of our subspace semidefinite programming for extended eigenproblems.

Algorithm 1 – Subspace Semidefinite Programming for SDP Relax-
ation of Graph Partitioning with Preferences

1. Define (n + 1) × (n + 1) matrix C = 1
4

(
0 −dT

−d L

)
, m× 1 vector a,

and an operator A which is a set of m number of (n + 1) × (n + 1)
matrices.

2. Compute an interior feasible starting point y for the original problem.
3. Define (n + 1) × 3 vector V1 and m× 3 vector W1. The first column

of V1 should be the e1, the first standard basis vector, and the the
first two columns of W1 should be e1 and e2 respectively.

4. Compute the semidefinite programming solution (X̂, ŷ) on the sub-
space. The projected matrix, operator and vector on the subspace

are Ĉ = V T
j CVj , ˆ̂A(X̂) = WT

j Â(X̂) = WT
j




V T
j A1Vj • X̂

...
V T

j AmVj • X̂


 and

â = WT
j a, where Vj and Wj are the current orthogonal bases.

5. Estimate the “residual” matrix R̃ = C−AT (y) and compute r which
is an eigenvector corresponding to the minimum eigenvalue of R̃.

6. Orthonormalize r against the current orthogonal basis Vj . Append
the orthonormalized vector to Vj to give Vj+1.

7. Estimate residual p = A(X) − a = A(VjX̂V T
j) − a.

SDP for Graph Partitioning with Preferences in Data Distribution 711

8. Orthonormalize p against the current orthogonal basis Wj . Append
the orthonormalized vector to Wj to give Wj+1.

9. Compute X̃ = VjX̂V T
j of original size, where X̃ =

(
ξ xT

x X

)
.

5 Numerical Results

Here we describe how to reduce the number of constraints in original problem.
The semidefinite programming formulation of extended eigenproblem is written
as follows:

min
X̃

1
4

(
0 −dT

−d L

)
• X̃

Subject to (a) X̃ � 0
(b) ξ = 1
(c) diag(X) = e
(d) X • (eeT) = 0,

where X̃ =
(
ξ xT

x X

)
and X = xxT . The constraints (b) and (c) can be combined

together.

min
X̃

1
4

(
0 −dT

−d L

)
• X̃

Subject to (a) X̃ � 0
(b) A(X̃) = a
(c) X • (eeT) = 0.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

number of unknown

tim
e

(s
ec

)

SDP graph partitioning w/ preference
subspace SDP graph partitioning w/ preference using dense data structure
subspace SDP graph partitioning w/ preference using sparse data structure

Fig. 2. Timings comparing subspace SDP extended eigenproblem against SDP
extended eigenproblem

712 Suely Oliveira et al.

There are n number of constrains from (c) in (3). We rewrite the problem so that
we can reduce the number of constraints in the original problem. The operator A
is defined in terms of m diagonal matrices Ai where (Ai)jj is one if j ≡ i (mod
m), and zero otherwise, i = 1, · · · ,m and m ≤ n:

min
X̃

1
4

(
0 −dT

−d L

)
• X̃

Subject to (a) X̃ � 0
(b) A(X̃) = (n/4m)/e
(c) X • (eeT) = 0,

where e is the vector of ones of the appropriate size.
The new algorithms have been implemented within the existing semidefinite

software, CSDP [4] and matrix computation was utilized by Meschach [27]. The
codes were run on a HP VISUALIZE Model C240 workstation, with a 326MHz
PA-8200 processor and 512MB RAM.

The above subspace algorithm and CSDP were run with square matrices
of various sizes. The subspace algorithm was implemented using both dense
data structures and sparse data structures. Figure 2 compares the observed
running timings for using CSDP directly, and the two implementations of the
subspace algorithm. The vertical-axis shows the time in seconds. The horizontal-
axis shows the number of unknowns: 9, 49, and 225. The number of constraints
of the original problem for both methods was reduced to 5 for the matrix with
9 unknowns, 9 for the matrix with 49 unknowns, and 17 for the matrix with 225
unknowns, as described above. From this graph, we can see that the subspace
algorithm takes less than the original algorithm as the number of unknowns
increases. And implementation using sparse data structure perform much better.
The timing for original method and subspace method with both dense and sparse
data structures are summarized in Table 1, Table 2, and Table 3.

Table 1. Timings for SDP extended eigenproblem with reduced number of
constraints

size of unknowns 9 49 225
number of constraints 5 9 17

running time (sec) 0.030 0.990 62.440

Table 2. Timings for subspace SDP extended eigenproblem using dense data
structure with reduced number of constraints

size of unknowns 9 9 49 225
number of constraints 5 5 9 17
number of iterations 3 5 7 17

‖p‖2 1.19× 10−6 5.25× 10−7 1.08× 10−5 9.54× 10−5

running time (sec) 0.110 0.120 0.510 30.100

SDP for Graph Partitioning with Preferences in Data Distribution 713

Table 3. Timings for subspace SDP extended eigenproblem using sparse data
structure with reduced number of constraints

size of unknowns 9 9 49 225
number of constraints 5 5 9 17
number of iterations 3 5 7 15

number of Arnoldi iterations 9 9 30 30
‖p‖2 1.86× 10−6 6.24× 10−6 3.083 × 10−5 4.10 × 10−4

running time (sec) 0.040 0.130 0.420 7.690

The Table 4 shows the behavior of ‖p‖2 as the subspace was expanded in sub-
space SDP extended eigenproblem using dense data structure. Data was taken
for the matrix with 9 unknowns and number of constraints is 5, the matrix with
49 unknowns and number of constraints is 9, and the matrix with 225 unknowns
and number of constraints is 17. As you can see, all the cases converged at the
end. The Table 5 is the result for subspace SDP extended eigenproblem using
sparse data structure. The behavior of the ‖p‖2 is same as that for dense data
structure.

Table 4. ‖p‖2 of subspace SDP extended eigenproblem using dense data struc-
ture with reduced number of constraints for matrices with number of unknown
= 9, 49, and 225

size of unknowns 9 49 225
number of constraints 5 9 17

number of iteration
1 68.7507477 12.4849939 15.341258
2 7.34615088 3.8352344 14.1316462
3 1.19470394e-06 4.51103926 1218.76562
4 5.49540289e-07 3.52121067 2978.45337
5 5.24935558e-07 4.89502668 16.0653
6 0.531660855 3359.63013
7 1.07650176e-05 17.5198021
8 2.97533984e-06 5.35400295
9 36342.1484 17.7656918
10 7.57762194
11 696.369324
12 5.29387665
13 737332.562
14 484.507904
15 16.7516613
16 0.000186197911
17 9.53856725e-05

714 Suely Oliveira et al.

Table 5. ‖p‖2 of subspace SDP extended eigenproblem using sparse data struc-
ture with reduced number of constraints for matrices with number of unknown
= 9, 49, and 225

size of unknowns 9 49 225
number of constraints 5 9 17

number of iteration
1 68.7507477 12.4849596 16.1067295
2 7.34615374 4.14506721 15.4141665
3 1.86033265e-06 5.64862299 16.7704239
4 7.83976702e-07 3.44969082 799.051331
5 6.24131007e-06 4.71650219 29.9862556
6 1.86342728 7.08970928
7 3.08254312e-05 11.917738
8 33748.1367 844.419495
9 36664.4961 14.5084686
10 447.563751
11 4.25445318
12 56.6501083
13 10.7289038
14 0.814486623
15 0.000409778644
16 11.1356792
17 201.696182

References

[1] F. Alizadeh. Interior-point methods in semidefinite programming with applica-
tions to combinatorial optimization. SIAM Journal on Optimization, 5(1):13-51,
1995. 705

[2] F. Alizadeh, J. P. A. Haeberly, M. V. Nayakkankuppam, M. L. Overton, and
S. Schmieta. SDPpack user’s guide - version 0.9 beta for Matlab 5.0. Technical
Report TR1997-737, Computer Science Department, New York University, New
York, NY, June 1997. 705

[3] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix
eigenproblem. Quarterly Applied Mathematics, 9:17-29, 1951. 709

[4] B. Borchers. CSDP, 2.3 User’s Guide. Optimization Methods and Software,
11(1):597-611, 1999. 705, 712

[5] M. Crouzeix, B. Philippe, and M. Sadkane. The Davidson method. SIAM J. Sci.
Comput., 15(1):62-76, 1994. 709

[6] K. Fujisawa, M. Kojima, and K. Nakata. SDPA User’s Manual - Version 4.50.
Technical Report B, Department of Mathematical and Computing Science, Tokyo
Institute of Technology, Tokyo, Japan, July 1999. 705

[7] M. R. Carey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
problems. Theoretical Computer Science, 1:237-267, 1976. 704

[8] B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no
clothes? (extended abstract). In Lecture Notes in Computer Science, volume 1457,
1998. 704

SDP for Graph Partitioning with Preferences in Data Distribution 715

[9] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel comput-
ing. Parallel Comput., 26(12):1519-1534, 2000. 704

[10] B. Hendrickson and R. Leland. The Chaco user’s guide, version 2.0. Technical
Report SAND-95-2344, Sandia National Laboratories, Albuquerque, NM, July
1995. 705

[11] B. Hendrickson, R. Leland, and R. Van Driessche. Enhancing data locality by
using terminal propagation. In Proc. 29th Hawaii Intl. Conf. System Science,
volume 16, 1996. 704

[12] M. Holzrichter and S. Oliveira. A graph based Davidson algorithm for the graph
partitioning problem. International Journal of Foundations of Computer Science,
10:225-246, 1999. 705, 709

[13] M. Holzrichter and S. Oliveira. A graph based method for generating the Fiedler
vector of irregular problems. In Lecture Notes in Computer Science, volume 1586,
pages 978-985. Springer, 1999. Proceedings of the 11th IPPS/SPDP’99 workshops.
705, 709

[14] S. E. Karisch and F. Rendl. Semidefinite programming and graph equipartition.
In P. M. Pardalos and H. Wolkowicz, editors, Topics in Semidefinite and Interi-
orPoint Methods, volume 18, pages 77-95. AMS, 1998. 705

[15] G. Karypis and V. Kumar. METIS: Unstructured graph partitioning and sparse
matrix ordering system Version 2.0. Technical report, Department of Computer
Science, University of Minnesota, Minneapolis, MN, August 1995. 705

[16] C. Lanczos. Solution of systems of linear equations by minimized iterations. J.
Research Nat’l Bureau of Standards, 49:33-53, 1952. 709

[17] S. Oliveira. On the convergence rate of a preconditioned subspace eigensolver.
Computing, 63(2):219-231, December 1999. 709, 710

[18] S. Oliveira and T. Soma. A multilevel algorithm for spectral partitioning with
extended eigen-models. In Lecture Notes in Computer Science, volume 1800, pages
477-484. Springer, 2000. Proceedings of the 15th IPDPS 2000 workshops. 704,
706

[19] S. Oliveira, D. Stewart, and T. Soma. A subspace semidefinite programming for
spectral graph partit ioning. In P.M.A Sloot, C.K.K. Tan, J.J. Dongarra, and
A. G. Hoekstra, editors, Lecture Notes in Computer Science, volume 2329, pages
10581067. Springer, 2002. Proceedings of International Conference on Computa-
tional Science-ICCS 2002, Part 1, Amsterdam, The Netherlands. 704, 709

[20] F. Pellegrini. SCOTCH 3.1 user’s guide. Technical Report 1137-96, Laboratoire
Bordelais de Recherche en Informatique, Universite Bordeaux, France, 1996. 705

[21] A. Pothen, H. D. Simon, and Kang-Pu K. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430-452, 1990. 704,
705

[22] R. Preis and R. Diekmann. The PARTY Partitioning-Library, User Guide - Ver-
sion 1.1. Technical Report tr-rsfb-96-024, University of Paderborn, Germany, 1996.
705

[23] F. Rendl. A Matlab toolbox for semidefinite programming. Technical report, Tech-
nische Universitdt Graz, Institut fiir Mathematik, Kopernikusgasse 24, A-8010
Graz, Austria, 1994. 705

[24] F. Rendl, R. J. Vanderbei, and H. Wolkowicz. primal-dual interior point algo-
rithms, and trust region subproblems. Optimization Methods and Software, 5:1-16,
1995. 705

[25] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester Univer-
sity Press, Oxford Road, Manchester M13 9PL, UK, 1992. 709

716 Suely Oliveira et al.

[26] G. L. G. Sleijpen and H. A. Van der Vorst. A Jacobi-Davidson iteration method
for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17(2):401-425, 1996.
Max-min eigenvalue problems, 709

[27] D. E. Stewart and Z. Leyk. Meschach: Matrix Computations in C. Australian
National University, Canberra, 1994. Proceedings of the CMA, # 32. 712

[28] K. C. Toh, M. J. Todd, and P. H. Tiitüncii. SDPT3 - a Matlab software package
for semidefinite programming, version 2.1. Technical report, School of Operations
Research and Industrial Engineering, Cornell University, Ithaca, NY, September
1999. 705

[29] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49-
95, 1996. 705

[30] L. Vandenberghe and S. Boyd. SP Software for semidefinite programming User’s
guide, version 1.0. Technical report, Information System Laboratory, Stanford
University, Stanford, CA, November 1998. 705

[31] C. Walshaw, M. Cross, and M. Everett. Mesh partitioning and load-balancing
for distributed memory parallel systems. In B. Topping, editor, Proc. Parallel &
Distributed Computing for Computational Mechanics, Lochinver, Scotland, 1998.
705

	Semidefinite Programmingfor Graph Partitioning with Preferencesin Data Distribution
	The Graph Partitioning Problem and Parallel Data Distribution
	Spectral Graph Patitioning and Semidefinite Programming
	A Semidefinite Programming Model of the Graph Partitioning Problems with Preferences
	Solving the New SDP Relaxation Efficiently
	Numerical Results

