
1

CSense: A Stream-Processing Toolkit for Robust and
High-rate Mobile Health Systems

Farley Lai, Syed Shabih Hasan, Austin Laugesen, Octav Chipara
University of Iowa

Abstract—This paper presents CSense – a stream-processing
toolkit for developing robust and high-rate mHealth systems in
Java. CSense addresses the needs of these systems by providing
a new programming model that supports flexible application
configuration, a high-level concurrency model, memory manage-
ment, and compiler analyses and optimizations. The compiler
analyses detect a range of programming errors including appli-
cation composition errors, improper use of memory management,
and data races. We identify that memory management and
concurrency limit the scalability of stream processing systems.
We incorporate memory pools, frame conversion optimizations,
and custom synchronization primitives to develop a scalable run-
time. CSense is evaluated on Galaxy Nexus phones running
Android. Empirical results indicate that our run-time achieves
25 times higher steam processing rate compared to a realistic
baseline implementation. Moreover, our frame analysis optimizes
the exchange of data between components to achieve an additional
45% improvement in stream rate. We demonstrate the versatility
of CSense by developing three mHealth systems.

I. INTRODUCTION

Mobile health (mHealth) systems are expected to transform
how healthcare professionals collect information about patients
including information regarding a patient’s physiology, physi-
cal activities, and social interactions. A typical mHealth system
collects readings from sensors, extracts domain-specific fea-
tures from the readings, and computes higher-level inferences
and representations of a patient’s activity and physiological
state based on the computed features. Results of recent studies
on mHealth systems have shown the feasibility of collecting
medical records with higher resolution than would be possible
through manual data collection methods [1], [2]. However,
experience has also shown that the development of mHealth
systems is particularly time demanding and challenging even
for expert programmers. The prolonged development time has
hindered the advancement of mHealth systems as a majority
of the time is spent ensuring that the system operates robustly
within the resource constraints of sensor platforms rather
than exploring different sensing trade-offs or novel system
architectures.

A key challenge to mHealth systems is to process tens of
thousands of sensor readings in real-time or within a few
seconds after their collection. This is particularly challenging
due to the limited computational resources and energy budgets
available on mobile phones and wireless sensors. Traditionally,
developers have addressed this problem by using low-level
programming languages, such as C, to write efficient native
code. Moreover, developers use low-level primitives, such as

malloc/free and threads, to manage memory and concurrency.
As a result, resource management becomes tedious and com-
plex and is a source of programming errors that are difficult
to identify and fix. This approach sacrifices programability
and robustness in favor of performance. In this paper, we
demonstrate that this trade-off is unnecessary even on a virtual
machine in an optimized stream-processing (SP) environment.

The aim of the CSense is to provide developers a compiler
and run-time environment that simplify the development of
mHealth systems that are robust and support high-rate SP.
CSense adopts a SP model similar to those proposed for
flexible routers [3], multimedia applications [4], and mobile
sensing applications [5]–[7]. The basic building blocks of
CSense are reusable components that encapsulate user code.
An application is built by connecting components into a
directed acyclic graph called the Stream Flow Graph (SFG).

The need to simplify development and prevent bugs mo-
tivates several design decisions that distinguish CSense from
prior works. We opt to implement CSense in Java – a lan-
guage that provides higher productivity than C/C++ [8] – and
target widely used Android devices. The key feature of the
CSense model is the SFG that supports flexible application
configuration, static analysis, and optimization. The CSense
compiler may detect and prevent a range of programming
errors including application composition errors, incorrect usage
of the memory managed system, and data races. We provide a
high-level mechanism for specifying concurrency by defining
execution constraints among components. For example, con-
straints may specify the components that must be executed in
different domains (i.e., threads). The compiler partitions the
application into domains subject to the specified constraints
and ensures that data exchanges across domains are thread-
safe. High concurrency is achieved by executing multiple
domains concurrently and by incorporating support for event
scheduling and non-blocking I/O (NIO) operations.

Experiments show that garbage collection and concurrency
mechanisms limit the scalability of SP systems on virtual ma-
chines (VMs). The memory organization of frames is important
to minimize expensive copy operations and allow components
to be executed at different rates. Moreover, CPU-intensive
components that perform functions, such as feature extraction,
typically dominate a system’s workload. Such components
should be implemented in native code to improve performance.

We developed a run-time environment that supports high-
rate SP efficiently on the Dalvik VM. The run-time envi-
ronment has the following salient features. (1) CSense uses
pass-by-reference semantics and captures memory operations



2

explicitly as part of SFG to mitigate the impact of object
creation and garbage collection. (2) We implement the run-
time environment using lock-free concurrency and integrate
it with Android’s power management. (3) CSense optimizes
the memory allocation of frames to ensure efficient frame
exchanges across components. (4) CSense components may
be implemented as MATLAB functions that are compiled into
native code.

The performance of the CSense run-time and optimiza-
tions were evaluate empirically on mobile phones. Exper-
iments show that the use of memory pools and lock-free
synchronization improves the peak SP processing rate by as
much as 25 times over a realistic baseline implementation.
Moreover, our frame optimization reduces the number of
memory copies and allows components to be executed at
different rates. This can further improve performance by as
much as 45%. More importantly, we have used CSense to
implement three mHealth systems: ActiSense, AudioSense,
and SpeakerSense. The three systems were selected because
they produce different types of workloads and pose different
system challenges. ActiSense requires high concurrency to
predict patient activity from multiple accelerometers connected
to a phone over Bluetooth. SpeakerSense is a CPU-intensive
application that processes speech samples to determine the
identity of speakers. AudioSense delivers electronic surveys
and collects audio samples to evaluate the performance of
hearing aids. The key challenge of AudioSense is energy
efficiency, as surveys must be delivered during weeklong data
collection sessions.

II. RELATED WORK

This section reviews prior work on stream processing (SP),
focusing on the differences in programming models, concur-
rency, memory management, and operating environment.

SP models have been studied for decades (see [9] for a
review). SP systems can be broadly divided into synchronous
and asynchronous systems. Synchronous systems operate on
a shared clock (or clocks) that dictates when components are
executed. The rigid timing of synchronous systems is suitable
for compiler optimizations. Compilers can determine execution
rates, buffering requirements, and implement efficient schedul-
ing [5], [9], [10]. Asynchronous systems provide a more
flexible concurrency model but may sacrifice performance, as
many of the optimizations developed for synchronous systems
do not translate these systems. CSense adopts an asynchronous
model to support the highly concurrent workload characteristic
of mHealth systems. Moreover, in contrast to some SP models
that limit the structure of the data flow graph [5], [10] or
develop specialized architectures [6], CSense uses general
directed acyclic graphs. The push and pull semantics used
to exchange frames in CSense are similar to those of Click
[3]; however, pull operations are implementing as polling
requests that may respond asynchronously. The SFG is the
main novelty of CSense. The SFG captures application-level
properties including the flow of data between components,
constraints on frame types and their sizes, and concurrency.
SFGs support flexible configuration, program analysis for
safety, and application-level performance optimizations.

Since SP models capture parallelism explicitly they provide
a rich foundation for developing highly parallel systems. The
problem of partitioning streams onto threads or multiple pro-
cessors has attracted significant attention [11], [12]. A majority
of existing approaches require profiling information to drive
the partitioning algorithms [13]. The focus of CSense is to
develop a simple concurrency model and associated compiler
techniques to identify likely race conditions. CSense does
not use profiling information but rather utilizes constraints
supplied the programmer. This is motivated by our desire to
support a rapid development process, which does not allow
for extensive profiling. CSense supports task parallelism by
allowing for multiple execution domains. High concurrency is
achieved by using events and NIO operations within a domain.

CSense employs framing optimizations to support high rate
SP. The SigSeg abstract data structure used in XStream [14]
and WaveScript [10] is closest to our framing optimizations.
However, in contrast to SigSegs that are designed to support
operations on streams at run-time, we leverage on static
compiler analysis to optimize the organization of frames in
memory, which allows for highly efficient implementations,
albeit, at the cost of some flexibility.

Recently, a number of continuous sensing systems for mo-
bile phones have been proposed. These systems address the
challenge of running sensing applications concurrently with
other phone applications [6], [7]. However, our interactions
with doctors and experience with deploying mHealth systems
indicate that doctors prefer to use dedicated devices in clinical
trials to ensure robustness and increased battery lifetime. For
this reason, CSense does not focus on resource contention
between applications. More importantly, unlike most other SP
systems [5], [6], [10], [14], CSense is implemented in Java to
support rapid development. This introduces important system
challenges that must be overcome to support high rate SP.
CSense provides a 25 times higher SP rate than a baseline
Java implementation by optimizing memory accesses, frame
allocations, and using lock-free concurrency. CSense integrates
with MATLAB to generate efficient signal processing code and
with Android power locks for power management.

III. CSENSE DESIGN

CSense aims to simplify the development of mHealth sys-
tems that are robust and support high-rate SP. The building
blocks of CSense are fine-grained components that encapsulate
user functionality. Applications are built by connecting com-
ponents into directed acyclic graphs. This general organization
is common in SP frameworks [3], [5]–[7], [14]. The novelty of
our programming model is the Stream Flow Graph (SFG) and
the associated compiler analyses and optimizations it supports.

Three basic principles underline the design of CSense:
CSense builds on Java: CSense components are implemented
as Java classes. The Android SDK provides programmers
a rich set of reusable components which, when used in
conjunction with object-oriented programming techniques, can
significantly reduce applications development time. However,
this approach has disadvantages: (1) supporting high-rate SP
requires careful engineering and deep understanding of the op-
erating system internals, (2) low-level concurrency primitives



3

do little to support the writing of safe code, and (3) it is difficult
for compilers to analyze and optimize an application globally
when it is structured as loosely coupled Java components.
CSense is designed to address these limitations.
Flexible, safe, and optimized applications: Applications are
modeled as SFGs, which capture application-level properties
including the flow of data between components, constraints
on frame types and their sizes, and concurrency. SFGs sup-
port flexible configuration, program analysis for safety, and
application-level performance optimizations.
Native code and profiling support: Most stream operations
can be implemented efficiently in Java. However, there are
cases when native implementations would significantly reduce
computational overhead. CSense components may be imple-
mented in MATLAB and compiled to native code. This has
the advantage of including efficient signal processing functions
that are often readily available as MATLAB toolboxes.

The remainder of this section describes the programming
model and associated compiler analyses and optimizations. The
run-time environment is described in Section IV.

A. Programming Model
CSense applications are built by writing and assembling

components. Components encapsulate functionality common to
mHealth systems including support for data collection, feature
extraction, file I/O, and network operations. Components are
connected through connections that are used to exchange
frames. The run-time environment implements components as
Java objects, connections as objects references, and frames are
exchanged through virtual function calls.

The core abstraction of CSense is the SFG. The SFG
is a directed acyclic graph (DAG) that has components as
vertices and connections as edges. SFG plays a similar role
to that of abstract syntax trees in traditional compilers. SFGs
provide an abstraction to support application configuration,
error checking, and optimization. CSense does not create yet
another language for defining, configuring, and connecting
components. Instead, the programmer writes a bootstrap
program that constructs the SFG using a simple Java API.
Running the bootstrap invokes the compiler to generate
code that is then compiled for the target platform (see Section
III-F). Figure 1 shows the bootstrap of a speaker identifi-
cation system.

A component specification includes: the component class,
port declarations, internal connections, and initialization pa-
rameters. The component class specifies the underlying Java
class that implements the component. A component’s port
declaration defines its input and output ports, which constitute
the public interface of the component. Each port has a unique
name and a CSense type. A component may maintain private
state. A component operates as follows: it receives a frame over
an input port, transforms the incoming frame and/or updates
its private state, and outputs the frame on one or more output
ports. The flow of frames within a component – from one
input port to one or more output ports – is captured using
internal connections. This information would be difficult to
extract since our components are implemented in both Java and

MATLAB. Thereby, we rely on developers to specify a com-
ponent’s internal connections. This information is required to
capture the flow of frames across components and it is used for
error checking and optimizations. For the same reason, we do
not allow components to copy frames internally. Initialization
parameters are passed to the underlying object implementing
the component when the application is initialized.

A connection is established from a single input port to a
single output port. SFG does not permit fan-outs – a connection
from a single output to multiple inputs – or fan-ins – a
connection from multiple outputs to single input. Connections
support bi-directional communication using “push” and “pull”
semantics. A component may “push” frames to the next
component over an output port; conversely, a component may
“pull” data from a predecessor component over an input port.
Pulls are implemented as polling requests and the components
may respond asynchronously.

Components are intended to be fine-grained to maximize
reuse. Additionally, CSense supports component groups. A
group encapsulates a subgraph of connected components. The
group hides its internal components and their connections and,
similar to components, it exposes an interface defined by its
ports. Groups constitute “syntactic sugar” and are flattened in
the early stages of compilation.

B. Memory Management
The overhead of memory operations, including object cre-

ation, copy, and garbage collection, can dwarf computation
times. Our experiments indicate that without proper memory
management, the SP rate may be reduced by 25 times. These
steep performance penalties motivate the design of our memory
management system.

CSense adopts pass-by-reference semantics to exchange
frames between components efficiently. For memory manage-
ment purposes, we distinguish three types of components:
sources, user components, and taps. Sources are the only
components that produce new frames. Frames are modified
by user components and passed to a Tap when they are no
longer used. User components cannot make copies of frames or
create new ones. We provide the Copy and Ref components to
allow programmers to make copies and references of frames.
We expect to raise the programmer’s awareness of memory
operations by forcing them to include sources, taps, Copy,
and Ref in the SFG explicitly.

The explicit inclusion of memory operations as compo-
nents in SFG has the advantage of allowing the compiler to
analyze the application-level flow of data. At compile time,
the compiler verifies that all paths that originate at a source
terminate with a Tap. The generation of paths must account
for the fact that frame references may be created either by Ref
components or within components as captured by their internal
connections. This analysis ensures that all generated frames are
freed, thereby, preventing memory management bugs.

C. Type System
Our experience with developing mHealth systems has

showed us that Java’s type system is not sufficiently expressive



4
The bootstrap program for SpeakerSense:
public static void main(String[] args) {

Project proj = new Project("mfcc.xml", "android");
VectorC speechT = TypeC.newFloatVector(1024);
VectorC featureT = TypeC.newFloatVector(128);

proj.addComponent("audio",
new AudioComponent(16000, 16));

proj.addComponent("speechDetector",
new SpeechDetector(16000));

proj.addComponent("mfcc",
new MFCCFeaturesG(speechT, featureT));

proj.addComponent("toDisk",
new ToDiskComponentC(featureT));

proj.addComponent("httpPost",
new HttpPostC("http://wsn.cs.uiowa.edu/", "fileType"));

proj.link("audio", "energy");
proj.toTap("speechDetector::noSpeech");
proj.link("speechDetector::hasSpeech", "mfcc");
proj.toTap("mfcc::out");
proj.link("mfcc::features", "toDisk");
proj.toTap("toDisk");

}
Stream Flow Graph of SpeakerSense:

audio toDisk
httpPost

speech
Detector

Types declarations and constraints:
audioT : vector<short>, ≥ 1000
energyT: vector<double>, ≥ 8000, ≤ 24000
speechT: vector<double>, = 128
featuresT: vector<double>, = 11
diskT: frame
filenameT: vector<char>, ≤ 1024

tap0

mfcc

tap1

audioT!out

energyT!in

energyT!noSpeech

energyT!hasSpeech

speechT!in

speechT!out

featuresT!features

diskT!in

tap2

filenameT!out

tap3

filenameT!out

diskT!out

Fig. 1. The SpeakerSense bootstrap generates the speaker identification system. The audio component records audio at a configurable frequency. Sound
frames unlikely to contain speech are filtered out by the speechDetector. The mfcc component computes Mel-Frequency Cepstral Coefficients. For efficiency,
both speechDetector and mfcc are implemented in MATLAB. MFCCs are persisted on disk by toDisk and uploaded to a server by httpPost for the
final speaker identification. The types of ports are denoted using underlined text and their constraints are shown in the grayed box. The audio and httpPost
components require to be executed in different domains. The bounded boxes denote the execution domains.

to capture their rich framing constraints. Specifically, we found
that the frame size (i.e., number of samples in a frame) is
an important configuration parameter for components. Let us
consider the framing constraints of the audio, mfcc, and
speechDetector components in Figure 1. The audio
component records sounds in an underlying frame that is
returned to the user when it is full. Android OS enforces a
minimum size for the recording buffer to reduce CPU utiliza-
tion when recording audio. Similarly, the speechDetector
detector can determine whether or not a frame may contain
speech when its frame size is between 8,000 to 24,000 samples.
Existing streaming models do not capture these constraints.
As a result, configuration errors introduced during application
composition may go undetected until run-time. By capturing
the framing constraints explicitly, CSense can detect such
misconfigurations at compile-time.

Motivate by this limitation, CSense uses an extended type
system. CSense types may be divided into three categories:
primitive types, array types, and Java classes. We support the
same primitive types as Java: byte, short, int, long, char, float,
double, and boolean. In contrast to Java’s type system, we also
support multi-dimensional arrays. Multi-dimension arrays are
defined over primitive types and stored in column-major order.
The inclusion of multi-dimension arrays simplifies integration
with MATLAB. Array types are the prevalent mechanism for
specifying the type of frames in CSense.

Programming languages such as C, C++, or Java do not in-
clude the size of an array as part of the type signature. CSense
allows the programmer to define simple constraints (≤, <, =,
>, and ≥) over the size of each dimension of an array. This
mechanism allows developers to write components that can be
parameterized to work with frames of different size. Obviously,

the size of an array type must be eventually determined. We
call the procedure that determines the sizes of frame subject
to the defined constraints type materialization. The flexibility
of using size constraints should foster component reuse. A
description of type materialization is postponed to next section.

Generic types allow programmers to write generic com-
ponents that work with multiple types. We support generic
components by allowing the developer to parameterize the
type of ports. We found this mechanism to provide signifi-
cant flexibility and it is used in our components extensively.
For example, the mfcc component may be parameterized to
operate either on vectors whose element type is either float or
double. This allows the developer to trade-off computational
accuracy of MFCCs and computational overhead. Similarly,
depending on its configuration, the audio component may
record samples as bytes (8-bit samples) or shorts (16-bit
samples). This allows audio to be configured based on the
type of its input ports.

The CSense compiler uses the type system to ensure that
connections are established between compatible ports. Ports
are determined to be compatible if their types are compatible.
Type compatibility is determined only after type materializa-
tion when the constraints are solved. For two types to be
compatible, they must fall within the same type category:
primitives, arrays, or Java classes. Two primitive or Java types
are compatible if they are equal, while two array types are
compatible if they have the same base type and frame size.

D. Flow Analysis
Type materialization requires that the compiler determine

the size of array types subject to the constraints specified
by developers. However, not all feasible solutions to this



5

problem can be implemented efficiently. A source of ineffi-
ciency is frame conversions that occur when connecting ports
with incompatible types. Consider the connection between the
speechDetector and the mfcc components in Figure 2.
A feasible solution is for the speechDetector to output
frames of 10,000 samples and the mfcc to accept as input
frames of 256 samples. To handle the mismatch in frame
sizes, the compiler must introduce a Converter that receives
frames of 10,000 samples and outputs frames of 256 samples.
Since 10,000 is not a multiple of 256, the Converter cannot
be implemented efficiently as it requires at least some samples
to be copied. In contrast, if the speechDetector were to
output a frame of 10,240 samples then the samples can be
divided into 40 vectors that contain 256 samples as required by
mfcc. This may be implemented without copying by defining
40 non-overlapping views over the same underlying memory
buffer containing the 10,240 samples.

The goal of flow analysis is to find a solution to the type
materialization problem that may be implemented efficiently.
Accordingly, as part of flow analysis, the compiler determines
the sizes of array types and ensures that frame conversions
may be implemented efficiently. For clarity, we restrict our
focus to one-dimensional arrays that have the same element
type. A path captures the flow of frames in SFG from a
source, through user components, and terminating with a
Tap. To determine frame sizes and configuration parameters
of frame conversions, we introduce the following variables:
super-frames (S), frames (F ), and multipliers (M ) (see Figure
2). A super-frame represents a contiguous block of memory
that may be divided into an integer number of frames. Since
each path is analyzed independently, without loss of generality,
we consider a single path that has a super-frame of size S. Four
variables control the frame conversion on a connection c of the
path: f I

c , fO
c , mI

c , and mO
c . The conversion is efficient when S

can be divided into both mI
c frames of size f I

c and mO
c frames

of size fO
c (S = fO

c ·mO
c = f I

c ·mI
c )

The compiler casts the problem of determining the super-
frames, frames, and multipliers as an Integer Linear Program
(ILP). Integer linear constraints are generated based on the
type constraints supplied by the programmer according to
the pseudocode shown in Figure 2. Let Cp

c be the type
constraints of port p (p ∈ {I,O}) pertaining to connection
c. As determined by our type system, a constraint is of form
(operator, v) where the possible operators are (<,≤,=,≥, >)
and the v is an integer. The algorithm iterates through each
type constraint adding new constraints to the ILP problem.
If the constraint is “=” (lines 4 – 7), then size of the frame
(fp

c ) is set to equal the v (as specified by the type constraint)
and we ensure that the super-frame (S) is a multiple of fp

c .
The value of the multiplier mp

c will be optimized based the
constraints of entire path. If the user does not supply a “=”
constraint i.e., when hasEquals = False (lines 14 – 16), then
we set mp

c = 1 indicating that the component can process the
entire super-frame in a single call. In this case, the value of
the frame fp

c will be optimized based on the constraints of
the entire path. If the constrain is “>” (lines 8 – 10), then
the size of the frame (fp

c ) must exceed the user specified v.
Analogous constraints are added for the case “<”, “≤”, and

1:for each constraint of Cp
c :

2: ILP: 0 < fp
c ≤ S

3: ILP: mp
c ≥ 1

4: (operator, v) = constraint
5: hasEquals = False
6: if operator is ’=’:
7: hasEquals = True
8: ILP: fp

c = v
9: ILP: S = fp

c ×mp
c

10: elseif operator is ’>’:
11: ILP: fp

c > v
12: elseif operator is ’<’:
13: ILP: fp

c < v
14:if hasEquals = False:
15: ILP: mp

c = 1
16: ILP: S = fp

c ×mp
c

Source

Tap

Super-frame
(S)

f1
O

1

2

3

m1
O

f1
I m1

I

f2
O m2

O

f2
I m2

I

f3
O m3

O

f3
I m3

I

Fig. 2. Frame analysis: Algorithm and notation

“≥”. Moreover, the frames sizes fp
c are further constraint to be

smaller or equal to then super-frame sizes S (line 2). Similarly,
all multipliers (mp

c ) must be at least 1. The objective function is
to minimize the size of the super-frame as to minimize memory
usage.

Solving the created ILP will determine the value of super-
frames, frames, and multipliers subject to the type constraints
specified by the programmer and those required to perform
efficient frame conversions. A solution to the ILP problem does
not exist in two cases: there is no solution to type material-
ization and there is no efficient implementation. In the former
case, the compiler generates an error; in the latter case the
compiler generates a warning that inefficient conversions are
used and reruns the ILP without the efficient frame conversion
constraints. In practice, the developers select frame sizes to be
multiples of each other, in which case, a feasible solution to
the ILP problem exists.

E. Concurrency
Concurrency is prevalent in mHealth systems: sensors are

sampled, data is uploaded to servers, and the user interacts
with the underlying system. This results in a mix of events
and SP operations, which must be processed concurrently.

CSense provides three concurrency mechanisms: domains,
events, and selectors. A domain includes a subgraph of com-
ponents that are executed in the same thread. Components
pertaining to the same domain exchange frames through func-
tion calls without requiring synchronization. Data exchanges
across domains are mediated by synchronization queues. Syn-
chronization queues buffer frames to handle variations in the
execution rate of different domains. A key advantage of the
domain abstraction is its simplicity: the developer can reason
about the behavior of components within a domain using
sequential semantics.

Each domain has a scheduler that is responsible for manag-
ing events and selectors. Both mechanisms allow components
to defer their execution to allow other components to run.
CSense supports high concurrency by integrating with Java
Nonblocking I/O (NIO). A component may register NIO
selectors with the scheduler. The scheduler calls the component
when the NIO selector has data available to read or write.



6

This mechanism allows the scheduler to hide most of the I/O
penalties. We restrict components to be able schedule events
or register selectors for themselves, essentially providing inde-
pendent event streams per component. Moreover, to preserve
the integrity of the domain abstraction, event and selector
handlers are executed in the domain of the component. Event
and selector handlers are executed without preemption.

The CSense concurrency model allows many race conditions
to be detected at compile time. The model guarantees that there
are no race conditions if a frame and all its references are
processed within the same domain. This is because the entire
subgraph of components that access the frame is embedded
within a single domain. Similarly, no race conditions exist
when there is a single reference to a frame, which may be
accessed in one or more domains. The requirement of a single
reference guarantees that the frame is processed in a single
domain at any time. There exists a potential for race conditions
when references to a frame are passed to different domains. In
this case, the compiler issues a warning. This race analysis
guarantees that when no errors are generated there are no
race conditions, assuming the developer only uses the our
concurrency mechanisms. However, our analysis may have
false positives i.e., the compiler may issue a warning when
a race does not exist. For instance, this may occur when a
frame is accessed from two domains, but the two domains
never execute concurrently.

The programmer can specify concurrency by defining con-
straints on components. First, the programmer may specify
that a component should be executed in a new domain using
a NEW_DOMAIN constraint. The constraint is associated with
sources and components that include long/blocking operations.
For example, the NEW_DOMAIN constraint may be added to
the audio and httpPost to record and upload data concur-
rently. This is the prevalent concurrency constraint in our sys-
tems. Second, the programmer may enforce that components
are executed within the same domain using a SAME_DOMAIN
constraint. This is important in when components are tightly
coupled. For example, a data source may produce samples
that must be scaled. Separating this functionality into two
components would foster reuse, but would introduce significant
overhead at high sampling rates. In this case, the programmer
can include a group containing the two components and add
a SAME_DOMAIN constraint.

The compiler uses a simple heuristic to partition the SFG
into domains subject to the specified concurrency constraints.
The algorithm operates on the SFG in which all groups
are flattened except for those that include a SAME_DOMAIN
constraint. The algorithm iterates through each source in SFG
assigning multiple components to a domain. Initially, the
domain is set to zero and incremented in each iteration of the
algorithm. Let c and d be the source and domain currently
under consideration. The algorithm assigns c to run in d.
Additionally, it computes the predecessor subgraph of c that
includes all components x such that there is a path from x
to c. If no component in the predecessor subgraph requires
a NEW_DOMAIN, all components of the subgraph will be
executed in d. Otherwise, they will be assigned to a domain in a
later iteration of the algorithm. Next, the algorithm computes

the successor subgraph of c that includes all components x
such that there is a path from c to x. Component x will be
executed in domain d if no component on the path from c to
x has a NEW_DOMAIN constraint. In a post-processing step,
the groups with SAME_DOMAIN constraints are flattened and
the members assigned to the group’s domain. The proposed
heuristic typically assigns subgraphs of components that access
the same frame to the same domain, which minimizes the
likelihood of race conditions.

F. Compiler
The compiler has the following workflow. The bootstrap

creates an SFG by instantiating components, and configuring
and connecting them. Next, the bootstrap invokes the
compiler. After flattening groups, the compiler checks that
the SFG is structurally correct: no ports are unconnected and
no fan-ins, fan-outs, or cycles exist. Additionally, we ensure
that the all paths start with a source and end with a tap.
The compiler runs the flow analysis to materialize types and
includes Converter components in SFG, as appropriate.
The SFG is partitioned in domains and then checked for race
conditions. The final step of compilation is code generation
for the target platform.

The compiler uses the MATLAB compiler to generate C
code for components that use MATLAB functions. The C
code is compiled as a static library. The general strategy for
including a MATLAB function as a CSense component is to
create a mapping between input/output ports of the compo-
nent and the input arguments/return values of the MATLAB
function. This is accomplished through the same API used
to configure SFGs. The compiler generates custom wrapper
classes that call the generated static library. Data is exchanged
using NIO buffers for efficiency. The compiler also generates a
“main” application that configures components, connects them,
and creates threads for their execution. The code generation
completes by compiling the generated code. Even though in
this paper we focus on Android, owing to Java’s portability,
we have been able to run CSense on both Linux and OS X.

IV. RUN-TIME ENVIRONMENT

A. Component Implementation
CSense components subclasses the Java class

CSenseComponent, which provides about 20 functions
that cover life-cycle management, frame manipulation,
event handling, and logging. We provide convenient default
implementations for all these functions. Typically, components
override onPush, onPull, and onEvent. The onPush
and onPull handlers are called when frames are pushed
or pulled. The onEvent handler delivers events that were
previously scheduled by the component.

CSense components exchange the majority of data over
connections. Occasionally, components benefit from exporting
other public methods. For example, the audio component may
expose methods to control when sound is recorded. Other
components may access this interface by obtaining a reference
to an instance of an audio component by name. Addition-
ally, components may communicate through publish/subscribe



7

channels. This mechanism intended for components to publish
data to be shared with multiple subscriber components.

B. Scheduler
An application is partitioned into domains, each domain

having its own scheduler. The scheduler is responsible for
managing memory, events, and selectors.

The goal of memory management is to minimize the
impact of object creation, copying, and garbage collection.
We implement memory management as follow. Each source
maintains a memory pool that contains a number of super-
frames, which are preallocated when the application starts.
A source retrieves a super-frame from the pool when it has
data to write. Flow analysis ensures that frames are exchanged
efficiently until they reach a tap. Upon reaching the tap, the
scheduler must determine if it should put the super-frame back
in the memory pool. We associate a reference counter with
each super-frame. The reference counter is incremented each
time a new reference is created. Conversely, the counter is
decremented when taps are reached and, when the counter
becomes zero, the super-frame is put back in the pool for reuse.
This mechanism limits the creation of new frames and their
garbage collection.

A component may schedule events to run after a delay.
The scheduler maintains two execution queues. The immediate
execution queue is a FIFO queue that stores zero delay events.
Components use zero delay events to yield their turn and allow
other components to be executed. Non-zero delay events are
inserted in a priority queue sorted by time when they are
scheduled to fire. The scheduler operates in rounds. In each
round, the scheduler drains the immediate queue and processes
all the events in the priority queue scheduled to execute before
the current time. A component may also register selectors with
the scheduler. Selectors are checked at the end of a round and
components that have pending data are notified.

Memory pools and events may be accessed from different
threads, so a concurrency mechanism is necessary. Java in-
cludes support for concurrent collections including blocking
queues and synchronized arrays that may be used to implement
the event queues and memory pools of the scheduler. However,
the underlying implementation of these data structures use
reentrant locks. Locks are designed to handle high levels of
contention. Under low or medium contention, locks introduce
a high overhead since a thread must be suspended when it
attempts to acquire a lock that is already held by a different
thread. Atomic variables provide a lightweight synchronization
mechanism that is implemented efficiently using hardware sup-
ported compare-and-swap. The challenge with atomic variables
is that the developer has to implement appropriate mecha-
nism to handle concurrent access. To improve SP rates, we
have implemented customized synchronization primitives. Our
synchronization primitives use a two-level locking scheme.
Atomic variables are used for concurrency in the low content
case. If the lock implemented using atomic variables is not
acquired after several attempts, we switch to using reentrant
locks. A comparison between the concurrent collections pro-
vided by Java and our customized primitives is included in
Section V-A

C. Android Integration

CSense is designed to take advantage of the underlying
Android services. Consistent with the Android architecture,
a CSense application uses activities for user interfaces and a
service to host its run-time environment. The user interface
and service run in the same process, but in different threads.
CSense components have specialized implementations for An-
droid. For example, components that use sensors leverage on
the Android APIs to capture motion, GPS, and audio data.

CSense integrates with Android’s power management to
allow phones to sleep. Android uses power locks to prevent
the CPU and display from entering a sleep state. When no
power locks are acquired, Android will aggressively turn them
off. Releasing power locks prematurely may result in an appli-
cation being suspended for an indeterminate amount of time.
Other resources, such as network or GPS are not managed
though power locks. Instead, the programmer must explicitly
turn them on and off. These resources are typically accessed
from a single CSense component that is also responsible for
managing their power.

There are two challenges to integrating our scheduler and
Android’s power management: (1) we must determine when it
is safe to sleep, and (2) we must develop an efficient mecha-
nism to enter and leave sleep states. To determine if it is safe to
sleep, the scheduler consults the pending events and registered
I/O handlers. Each scheduler maintains an independent power
lock that is acquired during its initialization. In the following,
we describe the behavior of each scheduler independently. The
CPU will sleep only when all schedulers release their power
locks. Let tnow be the current system time and tfirst be the
time when the next event in either one of the scheduler’s
queues is scheduled to run. If tnow ≤ tfirst, then the scheduler
is running behind, effectively having to catch up with the
sequence of events. Thus, the power lock cannot be released
to allow the scheduler to catch up. Otherwise, if tnow > tfirst,
the scheduler can sleep for d = tfirst − tnow seconds. In this
case, the scheduler registers an alarm to wake up the system
after d seconds. Android guarantees that alarms wakeup the
system from sleep, at which point, the scheduler reacquires
the power lock. In the case when no events are scheduled, the
scheduler will go to sleep and may be woken by receiving data
from other domains or by external events.

Initial testing indicated that the above algorithm has impor-
tant limitation: it does not account for the time necessary to
transition to sleep and then to wakeup. Let twakeup be the
time from the time when the power lock is released until the
wakeup alarm is delivered. If the time the scheduler may sleep
d < twakeup, then some events will be delivered late. This is
particularly problematic when there are numerous events to
be processed due to highly concurrent workloads. To address
this limitation, we devised a two-level sleep strategy that only
release the power lock when d > tth, where tth is user-
specified constant. If d < tth, then the scheduler will use
Java’s wait/notify mechanism to sleep for d seconds without
releasing the power locks. Otherwise, we release the power
locks and allow the CPU to sleep. This algorithm is safe in
that it does not introduce additional delay penalties to pending



8

events due to sleep.

V. EVALUATION

In this section, we provide an empirical evaluation on
Galaxy Nexus phones running Android Jelly Bean. Galaxy
Nexus use a Texas Instruments OMAP 4460 SoC that includes
a 1.2 Ghz dual-core ARM Context-A9. The phone has 1GB of
memory and 32 GB of storage. C code is generated from MAT-
LAB functions using MATLAB R2012b and MATLAB Coder
2.3. The resulting code is cross-compiled into a static library
using Android NDK (r8d). Microbenchmarks are designed to
highlight the importance of memory management, concurrency
mechanisms, and efficient frame conversions. Additionally, we
used CSense to develop three complete systems to evaluate its
ease of use and efficiency.

A. Microbenchmarks
Producer-Consumer Benchmark: We implemented a
Producer-Consumer benchmark to evaluate the performance
of the CSense scheduler. The producer generates frames
at specified rates. The produced frames are passed to the
consumer and then to a tap. The producer and consumer
operate in different domains to capture the impact of inter-
domain connections. Memory was managed using either Java’s
memory management (GC) or using memory pools (MP ). In
the former case, new objects are created for each frame and
we rely on garbage collection to free them. This benchmark
does not include any frame conversions. Concurrency in
the scheduler was implemented using locking primitives (L)
and CSense’s synchronization primitives (C). A scheduler
implementation combines a memory management and a
locking mechanism. Implementations are labeled accordingly.
The reported results are averages over 1 minute traces.

Figure 3(a) shows the performance of three schedulers. We
increase the offered rate linearly and measure the rate at which
the consumer receives events. A scheduler should match the
offered rate until it reaches its peak rate. To understand the
source of the performance differences between implementa-
tions, we also measure the total garbage collection time and
CPU usage. The CPU usage is measured as the total time the
benchmark runs on either CPU core.

A naive implementation of the scheduler would use Java’s
memory management and locking concurrency primitives
(GC+L). Unfortunately, GC+L performs poorly: it supports a
peak rate of only 1,336 events/s. MP+L incorporates memory
pools but continues to rely on locking concurrency primitives.
Memory pools eliminate the creation of frames and reduce
garbage collection. This approach supports a peak event rate
20,518 events/s, which is 15 times higher than the naive im-
plementation. Figure 3(b) plots the garbage collection time for
each implementation as reported by Dalvik VM. As expected,
the naive implementation has the highest garbage collection
time. MP+L has significantly lower garbage collection time,
but garbage collection is not eliminated. In fact, the garbage
collection time increases linearly with the offered rates, albeit
at a slow rate. The source of the garbage collected objects
is the ReentrantLock used in Java concurrent collections.

8000 22050 32000 44100
Sampling rate (samples/s)

0

5000

10000

15000

20000

25000

30000

35000

T
o
ta

l 
C

P
U

 u
sa

g
e
 (

m
s)

copy

flow-analysis

(a) Benefits of flow analysis

m
fc

c

sa
v
e
A

u
d
io

sa
v
e
Fe

a
tu

re
s

a
u
d
io

co
n
v
e
rt

e
r

m
fc

cS
o
u
rc

e

ta
p
s0

5000

10000

15000

20000

T
o
ta

l 
C

P
U

 u
sa

g
e
 (

m
s)

copy

flow-analysis

(b) Detailed performance at 44100 Hz

Fig. 4. MFCC benchmark: Impact of whole-system optimizations.

These objects are created when a thread attempts to access a
lock that is already held by a different thread. This justifies
the linear increase in garbage collection times observed when
the offered rate is lower than the peak rate.

Using our concurrency primitives, the scheduler (MP+C)
may support a peak rate of 34,503 events/s, which represents
an additional 40% improvement over MP+L. Overall, the
proposed optimizations provide a 25 times improvement over
the naive implementation. Two factors contribute to these
improvements. The garbage collection time is reduced to zero
when our customized synchronization primitives are used.
Additionally, as shown in Figure 3(c), MP+C runs for a longer
time as indicated by the higher CPU time. This is because
our synchronization primitives reduce the number of thread
suspensions and resumptions.

Result: Object creation, garbage collection, and locking
concurrency primitives limit the scalability of SP on VMs.
Memory pools and lock-free concurrency may be used to
increase the supported peak event rate by as much as 25 times.

MFCC microbenchmark: To evaluate the benefits of flow
analysis, we implemented a pipeline that computes MFCCs
from audio samples and saves them to disk. The pipeline is
similar to that shown in Figure 1 except that we omit the
speechDetector to ensure a consistent workload in all
experiments. This functionality is representative of the fea-
ture extraction commonly performed in mHealth applications.
Moreover, the mfcc component is implemented in MATLAB
showcasing the ability to include MATLAB code in CSense
applications. We configured the run-time environment to use
memory pools and our customized concurrency primitives. We
provide results for when frame conversions are implemented
using memory copies and our frame analysis.



9

5000 10000 15000 20000 25000 30000 35000 40000
Rate (events/s)

0

5000

10000

15000

20000

25000

30000

35000

C
o
m

p
le

ti
o
n
 r

a
te

 (
fr

a
m

e
s/

s)

GC+L

MP+L

MP+C

(a) Scheduler implementations

5000 10000 15000 20000 25000 30000 35000 40000
Rate (events/s)

0

200

400

600

800

1000

1200

1400

T
o
ta

l 
g
a
rb

a
g
e
 c

o
lle

ct
io

n
 t

im
e
 (

m
s)

GC+L

MP+L

MP+C

(b) Total garbage collection time

0 10000 20000 30000 40000
Rate (events/s)

0

10000

20000

30000

40000

50000

60000

T
ot

al
 C

P
U

 u
sa

ge
 (

m
s)

GC+L
MP+L
MP+C

(c) CPU usage

Fig. 3. Producer-consumer benchmark: Assessing the impact memory pools and concurrency mechanisms.

Figure 4(a) plots the CPU usage when the audio sampling
rate was 8000, 22050, 32000, and 44100 Hz. The figure clearly
indicates the benefits of using the efficient frame conversions
enabled by flow analysis. Moreover, these benefits increase
with the audio sampling rate. At 44100 Hz, using flow analysis,
the CPU usage is reduced by 45% compared to the baseline.
To better understand the benefits of framing, Figure 4(b) plots
the time spent in each component of the MFCC pipeline. Aside
from minimizing the number of object copies, the use of super-
frames has three additional advantages: (1) It reduces overhead
since super-frames contain more samples than frames but
require the same number of function calls to push. This results
in lower overhead on mfccSource and tap components
that are responsible for memory management. (2) Superframes
allow components to execute at different rates. The superframe
is 4096 samples, but the mfcc source and saveFeatures
are executed 32 and 1 time, respectively, to process a super
frame. This feature explains the reductions in the CPU time
of mfcc, saveFeature, and saveAudio. (3) Finally, the
Converter component is used to convert short integers to
doubles. For efficiency, this component is implemented in
native code.

Results: Flow analysis permits efficient frame conversions
that not only reduce the number of memory copies but also
allow components to be executed at different rates.

B. Macrobenmarks
We have implemented three mHealth systems using CSense:

AudioSense, ActiSense, and SpeakerSense. Our discussion
highlights the wide-range of features supported by CSense.

ActiSense: ActiSense is a system that infers patient activ-
ities (running, sitting, walking, standing, and climbing stairs)
using accelerometer readings from multiple sensors. The sys-
tem is organized as a Body Sensor Network (BSN) in which
a mobile phone acts as a coordinator. Four Shimmer motes
are placed on the patient’s limbs. The Shimmer motes collect
acceleration readings at 50 Hz and relay the raw readings to the
mobile phone over Bluetooth. The mobile phone also collects
acceleration readings at 60 Hz. In addition, the mobile phone
is responsible for extracting features and using these features
to classify the patient’s activities in real-time. The computed
features are mean, time-domain and frequency-domain entropy,

0

10

20

30

40

50

60

70

80

90

100

69.54%

76.55%

94.64%

88.43% 87.16%

96%

Classification Algorithms

A
c
c
u

ra
c
y
(%

)

 

 

Naive Bayes (Phone+Shimmer)
Naive Bayes Ensemble (Phone+Shimmer)
SVM (Phone)
SVM (Shimmer)
SVM (Phone+Shimmer)
SVM Ensemble (Phone+Shimmer)

(a) ActiSense: Prediction activities with phone and
Shimmer motes

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Time (min)

C
P

U
 P

o
w

e
r 

C
o

n
s
u

m
p

ti
o

n
 (

m
W

)

 

 

CPU Power

LCD power

(b) AudioSense: Power management for week-
long deployments

Fig. 5. Empirical results from CSense applications

and correlation features. Feature extraction components have
been implemented in MATLAB and compiled to native code.
A Support Vector Machine (SVM) classifier is used to predict
patient activities in real-time. The main systems challenge in
ActiSense is to support high concurrency to allow for data to
be collected over Bluetooth and classify the patient’s activity.
ActiSense is based on the system developed by Bao and Intelli
[15]. A working prototyped of ActiSense that collected data
only from the mobile phone was developed in a single day.
Figure 5(a) shows prediction accuracy of different classifiers.
An accuracy of 96% is achieved when using SVM ensambles
that combine both data from phones and Shimmer motes.
This shows that CSense can be used to build accurate activity
recognition systems.

AudioSense: AudioSense uses mobile phones to measure
the performance of hearing aids in real-time and in-situ



10

[16]. The performance of hearing aids is characterized using
electronic surveys and sensor data. At randomized intervals,
electronic surveys are delivered to patients to assess their
subjective assessment of the hearing aid’s performance. While
the patient completes a survey, AudioSense also captures
audio samples and GPS locations to characterize the patient’s
listening context. AudioSense records audio samples at 16 Khz
and GPS location 0.1 Hz. AudioSense performs some signal
processing onboard and uploads the collected data over a
3G connection to a server for archival and further analysis.
The workload introduced by AudioSense alternates between
periods of activity and inactivity: on average data is collected
for 10 minutes every 1.5 hours. Therefore, a key challenge
is for CSense to closely integrate with the phone’s power
management system to allow data to be collected during
weeklong session with minimum number of recharge cycles.
Figure 5(b) shows the power consumption during which the
phone delivers surveys every 5 minutes and collects data for
3 minutes. Long periods of sleep may be achieved due to the
tight integration of the CSense scheduler with power locks.
AudioSense is currently deployed in a clinical trial to evaluate
hearing aids that will eventually include 50 patients. The
current version of AudioSense can deliver surveys for 3 days
without recharging batteries. Preliminary data indicates that
the system is highly robust, uploading all collected data to our
web server in spite of network disconnections and imperfect
cellular coverage.

SpeakerSense: SpeakerSense determines the identity of
speakers involved in a conversation in real-time from audio
samples. Modern speaker identification systems use Gaussian
Mixture Models (GMMs) to model speech, consistent with
the view that speech may be classified in a small number
of acoustic classes. SpeakerSense collects 16-bit samples at
16 Khz, which are used to compute the Mel-Frequency Com-
ponent Coefficients (MFCC). As MFCCs are computation-
ally intensive, SpeakerSense computes features on the mobile
phone which are then uploaded to a server for further analysis.
The key challenge in developing SpeakerSense is to support
the efficient computation of MFCC. Moreover, integration
with MATLAB on the server side simplifies classification as
MATLAB has support for GMMs.

VI. CONCLUSIONS

In this paper we presented the design, implementation, and
evaluation of CSense – a compiler and run-time environment
that simplifies the development of mHealth systems that are ro-
bust and support high-rate SP. CSense is implemented in Java
and integrates with MATLAB to simplify development. The
primary contribution of this paper is a new programming model
built on the Stream Flow Graph. The SFG captures application-
level properties including the flow of data across components,
constraints on frame types and their sizes, and concurrency.
SFGs support flexible configuration, program analysis for
safety, and application-level performance optimizations. The
CSense compiler may detect composition errors, incorrect
memory management, and data races.

We have identified that the memory management, concur-
rency, and power management limit the scalability of SP

systems. We incorporate memory pools, frame conversion
optimizations, custom synchronization primitives, and careful
integration with power locks to develop a scalable run-time
environment.

Microbenchmarks on Galaxy Nexus phones demonstrate
the benefits of the proposed programming model, compiler
optimizations, and run-time environment. Empirical results
indicate that our run-time environment achieves 25 times
higher SP rate compared to a baseline that uses Java’s memory
management and locking concurrency. Moreover, our frame
conversion technique can improve performance for up to 45%
in a realistic application. We demonstrated the versatility of
CSense by developing three mHealth systems.

REFERENCES

[1] O. Chipara, C. Lu, T. C. Bailey, and G.-C. Roman, “Reliable clinical
monitoring using wireless sensor networks: experiences in a step-down
hospital unit,” in SenSys, 2010.

[2] S. Consolvo, D. W. McDonald, T. Toscos, M. Y. Chen, J. Froehlich,
B. Harrison, P. Klasnja, A. LaMarca, L. LeGrand, and R. Libby,
“Activity sensing in the wild: a field trial of ubifit garden,” in SIGCHI,
2008.

[3] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263–297, 2000.

[4] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in MobiSys, 2011.

[5] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language
for streaming applications,” in Compiler Construction, ser. Lecture
Notes in Computer Science, R. N. Horspool, Ed., vol. LNCS 2304,
2002, pp. 179–196.

[6] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.
Campbell, “The Jigsaw Continuous Sensing Engine for Mobile Phone
Applications,” in SenSys, 2010.

[7] Y. Ju, Y. Lee, J. Yu, C. Min, I. Shin, and J. Song, “SymPhoney: A
Coordinated Sensing Flow Execution Engine for Concurrent Mobile
Sensing Applications,” in Sensys, 2012.

[8] P. Tyma, “Why are we using java again?” Communications of ACM,
vol. 41, no. 6, pp. 38–42, Jun. 1998.

[9] R. Stephens, “A survey of stream processing,” Acta Informatica, vol. 34,
no. 7, pp. 491–541, 1997.

[10] R. R. Newton, L. D. Girod, M. B. Craig, S. R. Madden, and J. G.
Morrisett, “Design and evaluation of a compiler for embedded stream
programs,” ACM Sigplan Notices, vol. 43, no. 7, p. 131, 2008.

[11] L. Gérard, A. Guatto, C. Pasteur, and M. Pouzet, “A modular memory
optimization for synchronous data-flow languages: application to arrays
in a lustre compiler,” in LCTES, 2012, pp. 51–60.

[12] P. Hudak and A. Bloss, “The aggregate update problem in functional
programming systems,” in POPL ’85, 1985, pp. 300–314.

[13] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden,
“Wishbone: profile-based partitioning for sensornet applications,” in
NSDI, Apr. 2009.

[14] L. Girod, Y. Mei, S. Rost, A. Thiagarajan, H. Balakrishnan, and
S. Madden, “XStream: a Signal-Oriented Data Stream Management
System,” in ICDE, 2008.

[15] L. Bao and S. Intille, “Activity recognition from user-annotated accel-
eration data,” in Pervasive Computing, ser. Lecture Notes in Computer
Science, 2004, vol. 3001, pp. 1–17.

[16] S. S. Hasan, F. Lai, O. Chipara, and Y.-H. Wu, “Audiosense: Enabling
real-time evaluation of hearing aid technology in situ,” in CBMS, 2013.


