Algorithmic Excursions: Topics in Computer Science II Spring 2016

Lecture 3 & 4 : e-net(contd.), e-approximation and Discrepancy

Lecturer: Kasturi Varadarajan Scribe: Santanu Bhowmick

In the last lecture, we looked at a probabilistic proof of the following lemma, for which we now provide a
deterministic algorithm.

Lemma 3.1 Let S = (X, R) be a finite range space and 0 < ¢ < 1. Then S has an e-net of size O(L In|R|).

Proof: We construct a set N C X using the following algorithm.

R« {reR||r|l >¢-|X|}

N — @.

while R’ # & do
Pick = € X that occurs in maximum number of ranges in R.
R« R \{reR|zer}.
N+ NU{z}

return N

By construction, N is an e-net as it has at least one element from each “sufficiently large” range i.e. ranges
having more than € - | X| elements. We bound the size of N as follows.

Suppose |R/| = k at the beginning of a certain iteration. Each r € R’ contains more than ¢ - | X| elements

by definition. We claim that there exists an element x € X that is contained in at least E&(‘I - k ranges in

R’. (To see why, consider the directed bipartite graph G = (R', X, F) where (r,z) € E if x € r. Each vertex
r € R has at least ¢ - | X| outgoing edges, so the total outdegree from the set R’ is at least € - | X| - k. The
average indegree of X is thus 5&?(" -k = e - k. Hence, there exists at least one element in X with indegree

e - k.) Thus, after the iteration of the while loop,

IR <k—-ec-k=(1-¢)k
Homework: Show that the bound on the size of N in the lemma follows. [ |

Lemma 3.2 Suppose S = (X, R) has VC-dimension d, and let Ils be its shatter function. Then

o= (5)+ () () (1)

Proof: Let Y C X be a finite subset with m elements. Then (Y, Ry) has VC-dimension at most d. It
suffices to show that if (X,R) is a finite range space with VC-dimension at most d and |X| = m, then
|R| < ¢pa(m). We prove the result by induction on m and d as follows.

Fix 2 € X, and let Ry = Rx\{z}. The range space (X \ {z},R1) has VC-dimension of at most d. So,
inductively, |R1| < ¢g(m — 1).

Let Ro ={r e R|z ¢ r,rU{z} € R}. The VC-dimension of (X \ {z},R2) is at most d — 1, and hence
IR2| < ¢pa—1(m —1).
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Then,
IR| = [R1| + Rz
< Ga(m — 1) + ¢a—1(m — 1)
= ¢a(m)
The last equality can be explained by the component-wise sum of the two terms ¢4(m — 1) and ¢4—1(m —1),
as follows:
m—1 m—1 m—1 m—1 m—1
an-n= (") (") ¢ () e =(G0) (M)
m—1 m—1 m—1 m—1
_ —-1) =
dursn = R S R ) B V)

) M+ () (")

It follows that if [R| = O(|X|?), then e-net size is O(< log | X]|).

()

Definition 3.3 Let S = (X, R) be a finite range space, and let 0 < e < 1. A subset A C X is an e-sample
(e-approximation) if for any r € R,
IXNnrl  |ANr|
— S £
X1 4]

Lemma 3.4 If A is an e-approzimation, it is also an -net.

| XNr|

Proof: Let r € R be a range having greater than ¢ - | X| elements. Then, x| > & and since A is an
e-approximation, "?Q‘Tl > 0 and thus A has non-zero intersection with range 7. [ |

Definition 3.5 LetS = (X, R) be a range space. Let x : X — {—1,+1} be a coloring. We denote/define/say:

o Forr e R, let x(r) = > x(x).

TET

e Discrepancy of x over r = |x(r)].

e Discrepancy of x, disc(x) = max Ix(r)].
re

Di S = i di .
e Discrepancy of X:Xan{nfnl,ﬂ} isc(x)

Definition 3.6 Suppose |X| is even, and Il is a partition of X into pairs. We can say that x : X — {—1,+1}
is compatible with I1 if for each {p,q} € 11, either

e x(p) = +1 and x(¢) = -1, or

e x(¢) = +1 and x(p) = —1



Lemma 3.7 Let S = (X, R) be a range space, and let I1 be a partition of X into pairs. Let |X| = n,|R|=m.
Let x be a random coloring compatible with II. Then Pr |disc(x) < vVn -1n 4m} > %

Proof: For range r € R, let {21, za,...,2:} C r be those elements paired with an element not in r. Then

x(r) = x(x1) + x(w2) + -+ + x(zt)

is the sum of ¢ independent random variables uniformly chosen from {—1,41}. Hence, for any A > 0, we
have the following by applying Chernoff bound,

A2 1
Prix(r) > Al < e = —
e 2t
Setting A = v/2t - In4dm, we get Pr[x(r) > V2t - Indm] < ke = 2.

Since t < %,
1
Pr [X(r) >Vn- ln4m} <Pr [X(r) > V2t ln4m] <m
m
By symmetry, we get

2 1
Pr {|X(r)| > \/n-ln4m} < = o

2m
Finally, using Union bound, we have

Pr [disc(x) >Vn- ln4m} =Pr

U|X(r)| > \/n-ln4m]
< ZPI‘ {|X(r)| >Vn- ln4m}

1 1
<N —_
T 4—~2m 2

T

from which the claim follows. [ |

Notes on concentration measures: We explore the difference between using Chernoff bound and using
Chebyshev’s Inequality in this short example.

Let Y =Y1 + Y2+ -+ + Y}, where each Y; is chosen independently uniformly at random from {—1,+1}. By
Chernoff bound, Pr[Y > A] < 3.
e

We now bound the same probability using Chebyshev’s inequality. We note that E[Y;] = 0,E[Y] =
> ElY:] = 0,E[Y?] = 1, Var]y;] = E[Y?] — (E[Y;])?> = 1. Due to independence of each Y;, Var(Y) =

t

3 Var(Y;) =t, and o(Y) = y/Var(Y) = /1.
i=1

1
az”

IN

By Chebyshev Inequality, for any real number a > 0, Pr [|Y — E[Y]| > a - V1]

Plugging o = 10 in the above, we get

1
> . < —
Pr([Y]|>10- V1] < 00

Plugging A = 10 - \/# in the inequality obtained using Chernoff bound, we have

1 2
Pr[YZlO-\/E]<eﬁ:>Pr[|Y|210-\/¥]<eﬁ
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Thus, the bound obtained using Chernoff bound is a much more precise bound than that obtained using
Chebyshev Inequality.

Lemma 3.8 Given a range space S = (X, R), a partitionI1, a coloring x compatible with I1 and disc(x) < f,

let @ ={xe€ X |x(z)=-1}. Then, for anyr € R, ‘)&T‘ — |C‘28‘T| < %, i.e. Q is an %—appmximation,

Proof: Fix r € R. Then,

IX(Ml =X\ Qnr[—|@nr|
=|IXnr[—l@nrl—l@nr]
=l XNnrl=2-1Qnr|| < f

Dividing last inequality by | X| =2-|Q| = n, we get

X nr  2-]@Nr| oy
| X 2-1QI [T n

Lemma 3.9 If A is an e-approzimation for (X, R) and A’ is an &' -approzimation for (A, R4), then A’ is
an (& + €’)-approzimation for (X, R).

The proof of the above claim is left as a homework.



