22C : 031 (CS : 3310 : 0001) Algorithms
 Homework 4

This homework is based on our discussions of dynamic programming from Chapter 6 of the text and from our notes.

- Exercise 2 of Chapter 6. (15 points)
- Exercise 6 of Chapter 6. (15 points)
- Exercise 9 of Chapter 6. (15 points)
- Let us define a layered graph as a directed graph $G=(V, E)$ in which the vertex set V can be partitioned into disjoint subsets $V_{0} \cdot V_{1}, \ldots, V_{t}$, with the property that any edge is from some vertex in V_{i} to some vertex in V_{i+1} for some i between 0 and $t-1$. We will refer to the V_{i} as the layers of the graph. Furthermore, the layer V_{0} has only one vertex, which we denote by s.
Describe an algorithm that, given such a graph, computes, for each vertex v in the graph, the number of paths from s to v. The algorithm should run in time polynomial in the number of vertices plus edges. You can assume that the graph is given to the algorithm using some convenient representation - for example, an adjacency list representation, in which each vertex has a list of incoming edges, a list of outgoing edges, and knows the layer to which it belongs. (15 points)
In the example shown on the next page, there are 4 paths from s to the only vertex in V_{3}; there are 4 paths from s to a, and 8 paths from s to b.
Hint: Consider a vertex $v \in V_{i}$. Relate the number of paths from s to v to the number of paths from s to the vertices in V_{i-1} from which there are edges to v.

The homework is due Tuesday, March 29, in class; if you can't make it to class on that day, just make sure you get it to me by that time.

Figure 1: A layered graph example

