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Abstract

This paper generalizes many-sorted algebra (hereafter, MSA) to order-sorted
algebra (hereafter, OSA) by allowing a partial ordering relation on the set of
sorts. This supports abstract data types with multiple inheritance (in roughly
the sense of object-oriented programming), several forms of polymorphism and
overloading, partial operations (as total on equationally defined subsorts), ex-
ception handling, and an operational semantics based on term rewriting. We
give the basic algebraic constructions for OSA, including quotient, image, prod-
uct and term algebra, and we prove their basic properties, including Quotient,
Homomorphism, and Initiality Theorems. The paper’s major mathematical re-
sults include a notion of OSA deduction, a Completeness Theorem for it, and
an OSA Birkhoff Variety Theorem. We also develop conditional OSA, includ-
ing Initiality, Completeness, and McKinsey-Malcev Quasivariety Theorems, and
we reduce OSA to (conditional) MSA, which allows lifting many known MSA
results to OSA. Retracts, which intuitively are left inverses to subsort inclu-
sions, provide relatively inexpensive run-time error handling. We show that it
is safe to add retracts to any OSA signature, in the sense that it gives rise to a
conservative extension. A final section compares and contrasts many different
approaches to OSA. This paper also includes several examples demonstrating
the flexibility and applicability of OSA, including some standard benchmarks
like STACK and LIST, as well as a much more substantial example, the number
hierarchy from the naturals up to the quaternions.
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1 Introduction

The essence of order-sorted algebra (hereafter, OSA) is a partial ordering < on a set S
of sorts; this subsort relation imposes the restriction on an S-sorted algebra A that if
s < s in S then A; C Ay where Ay denotes the set of elements of sort s in A. A major
motivation is to correctly handle erroneous and meaningless expressions, such as the top of
an empty stack or division by zero. This has been an important problem from the earliest
days of the algebraic approach to abstract data types [35]. Error algebra was a first try at
a more elegant solution [17], but unfortunately error algebra specifications do not always
have initial algebras [65]. OSA, which originated in [18], provides what now seems a fully
satisfactory and very flexible approach that provides:

1. Several forms of polymorphism and overloading;

2. Error definition, detection and recovery;

3. Multiple inheritance;

4. Selectors when there are multiple constructors;

5. Retracts, which (intuitively) are left inverses to subsort inclusions;

6. Partial operations made total on equationally defined subsorts;

7. An operational semantics that executes equations as (left-to-right) rewrite rules; and
8. A rigorous model-theoretic semantics for all these features.

The research reported here supports OBJ, a programming language with mathematical
semantics given by order-sorted algebra, and operational semantics given by order-sorted
term rewriting [19, 14, 15, 23]. Our experience with OBJ shows that subsorts are enormously
helpful in practice, since they can greatly improve both expressivity and readability.

1.1 Type Disciplines

A type discipline for a programming language has two main benefits:

1. it facilitates conceptual clarity by making explicit the restrictions on the arguments
and results of operations, and

2. it allows simple checks at program entry time that can catch many errors before
compilation or execution are attempted.

The most obvious type discipline is strong typing, where each operation has a fixed
sequence of argument types and a fixed result type. Many-sorted algebra (hereafter, MSA)
formalizes this for first-order operations, by interpreting strongly typed syntax in many-
sorted algebra. However, traditional strong typing is both too rigid and too inexpressive.
Order-sorted algebra overcomes both limitations by combining two key ideas: inheritance
and subsort polymorphism.

1.1.1 Inheritance and Polymorphism

Inheritance as a programming language feature developed from the Simula language [12],
and intuitively corresponds to inclusion of concepts, as found in natural language. For
example, we say that every hound is a dog and that every dog is a mammal, because
our concept of mammal includes that of dog which in turn includes that of hound. If we



associate an eztension to each concept, the set of objects that fall under it (e.g., the set of
all hounds, or the set of all rational numbers), then inclusion of concepts appears as set-
theoretic inclusion of the corresponding extensions. The obvious way to formalize this kind
of inclusion is by a partial ordering, that is, a reflexive, transitive, antisymmetric relation.
For example, the names Natural, Integer, and Rational satisfy the relation

Natural < Integer < Rational

and their extensions, denoted N, Z, and Q respectively, satisfy the corresponding subset
inclusions, NCZCQ. In order-sorted algebra, names such as Natural and Rational are
called sorts, and belong to the syntax, while the extensions N, Z, Q belong to an interpre-
tation of the syntax, that is, to an (order-sorted) algebra. The syntax is called a signature
and consists of a family of sorts, ordered by a partial order relation of inheritance, plus a
family of operation symbols with appropriate type information as discussed below.

A very attractive feature of standard mathematical notation is that it allows using one
symbol for several different but related operations, so that in applying this symbol we may
not even realize that we are moving about within the type hierarchy in a quite free way.
This is nicely illustrated by the number hierarchy. We can add 2 + 2 (two naturals), or
-7 + 2/3 (an integer and a rational), or 1/5 + 7/9 (two rationals), or 2 + 3/29 (a natural
and a rational). This flexibility comes from combining the “overloading” of the + symbol
for addition with inheritance among naturals, integers and rationals, in such a way that no
matter which addition is used, we get the same result from the same arguments, whenever
they make sense. We summarize this situation by saying that + is subsort polymorphic.
As discussed in the next subsection, this is only one of several different ways that the word
“polymorphic” is used.

1.1.2 Polymorphism is Polymorphic

The term “polymorphism” was introduced by Christopher Strachey to express the use
of a single operation symbol with different meanings in a programming language. He
distinguished two main forms of polymorphism, which he called ad hoc and parametric. In
his own words [75]:

In ad hoc polymorphism there is no simple systematic way of determining the
type of the result from the type of the arguments. There may be several rules of
limited extent which reduce the number of cases, but these are themselves ad hoc
both in scope and content. All the ordinary arithmetic operations and functions
come into this category. It seems, moreover, that the automatic insertion of
transfer functions by the compiling system is limited to this class.

Parametric polymorphism is more regular and may be illustrated by an
example. Suppose f is a function whose argument is of type a and whose result
is of type 8 (so that the type of f might be written @ — (), and that L is a
list whose elements are all of type « (so that the type of L is alist). We can
imagine a function, say Map, which applies f in turn to each member of L. and
makes a list of the results. Thus Map[f,L] will produce a Slist. We would like
Map to work on all types of list provided f was a suitable function, so that Map
would have to be polymorphic. However its polymorphism is of a particularly
simple parametric type which could be written (o — f,alist)— Slist, where «
and (@ stand for any types.

Strachey’s distinction is based on the kind of semantic relationship that holds between the
different meanings of an operation symbol, and it suggests a spectrum of possible styles for



the multiple use of an operation symbol, in which the more “regular” the relationship is,
the easier it is to do type inference, and the closer it is to parametric polymorphism:

e ad hoc in its strongest sense indicates semantically unrelated uses, such as + for
both integer addition and Boolean disjunction. (Even in such an extreme case, there
is still the tenuous connection that both instances of + are associative, commutative,
and have an identity element.)

e multiple representation when the uses are related semantically, but their repre-
sentations may be different, as with Strachey’s arithmetic system.

e subsort polymorphism where the different instances of an operation symbol are
related by inheritance (interpreted as subset inclusion) such that the result does not
depend on the instance used, as with + for natural, integer, and rational numbers.

e parametric polymorphism, as in Strachey’s Map function; this is implemented
in higher order functional programming languages such as Hope [5], ML [40] and
Miranda [77].

OSA distinguishes and supports all four styles of polymorphism. Ad hoc polymorphism is
supported by signatures in which the same symbol is used for sorts that are unrelated in the
inheritance hierarchy; subsort polymorphism is inherent in the nature of OSA, as already
explained. The implementation of arithmetic described by Strachey involves “transfer func-
tions” (which might now be called “coercions”) to change the representation of numbers.
But coercions are not needed for subsort polymorphic operations, since inheritance appears
as subset inclusion of the data elements; also, for regular signatures (Definition 2.3 below),
any expression involving subsort polymorphism has a smallest sort. OSA also nicely ac-
comodates coercions and multiple representation polymorphism, as discussed in [29] and
briefly reviewed in Section 1.5 below, while parametric polymorphism is provided by pa-
rameterized ordered-sorted algebras such as LIST[X] that provide higher-order capabilities
in a first-order setting [21]. These are called parameterized objects in the OBJ language
[14, 15, 19], and their semantics will be treated in Part III of this paper.

1.2 Logical and Operational Semantics

The original vision of “logic programming” called for using pure first order predicate calculus
directly as a programming language [49]. As has been well argued by Prolog advocates
(e.g., [73]), this confers some important benefits, including: program simplicity and clarity
(which can greatly ease program understanding, reusability, debugging and maintenance);
separation of logic and control; and identity of program logic with proof logic. In such a
language, a high level description of what a program does is actually a program, and can be
executed. Prolog [10, 9] only partially realizes this vision, since it has many features with
no corresponding feature in logic (e.g., cut, is and assert), and also lacks some important
features of logic (e.g., semantic equality and true negation).

We believe that the many advantages claimed for logic programming are all compromised
to the extent that it fails to realize a pure logic. Consequently, a major goal of our research
has been to create powerful programming languages that are based upon pure logics and
yet still support truly practical programming. An important advantage of logic-based
languages is that they are more convenient for parallel machines, since the compiler and
operating system can exploit whatever concurrency is actually available in the program and
the particular target machine, because programs are not tied down to particular control
strategies (sequential control in traditional imperative languages, and tasking, rendezvous,



etc. in imperative languages providing explicit concurrency). To this end, we have taken
the broad view? that a logical programming language £ consists of:

e a well-understood? logical system Z together with two subclasses of sentence called
statements and queries,

such that
e an L program P is a finite set of statements,
e every program has an initial model*, which gives its denotational semantics,
e operational semantics is a (reasonably efficient) form of deduction in Z, and

e 3 query is satisfied in an initial model of P if and only if it can be proven from P
(this is a form of completeness).

We can now define an answer to a query to be some property of a proof of the query;
for example, we might extract a value for each variable that occurs in the query. This
definition of logical programming explicates the perhaps more familiar notion of declarative
programming, in which programs tell what properties the result should have, rather than
how to calculate it. We claim that programs in logical programming languages are easier
to read, understand, write, debug, reuse, modify, maintain, and verify; we also claim that
it is easier to build environments to support such languages; in particular, it is easier to
build debuggers (see [63] for a discussion of some serious difficulties that arise in trying to
implement a debugger that can handle Prolog’s cut). Logical programming in this general
sense includes:

e functional programming, where the logic is some kind of equational logic, i.e., a
logic of the substitution of equals for equals; for example, OBJ is based on first order
order-sorted equational logic, and the usual higher order functional programming
languages can be seen as based upon higher order equational logic.

e relational (i.e., predicate, or Horn clause, or “logic”) programming, where the logic
is first order Horn clause logic (without equality), as in pure Prolog [52].

e multiparadigm programming, by combining the underlying logical systems, for
example, to get combined relational and functional programming from Horn clause
logic with equality as in Eqlog [26], combined functional and object-oriented pro-
gramming from reflective equational logic as in FOOPS [30], and all three paradigms
together from a reflective Horn clause logic with equality as in FOOPlog [30].

Logical programming can be given a precise grounding using the notions of institution
[22] and logical system [54], and this is in part responsible for the cleanliness and simplicity
of the various languages that we have designed. A logical programming language “wears its
semantics on its sleeve” and does not need the complex machinery of Scott-Strachey-style
“denotational” semantics [70, 74] or of Hoare-style “axiomatic” semantics [43]. In fact, we
would claim that a language that can only be given a semantics in one of these styles, and

2The basic intuitions for this view were expressed in [26] and formalized using institutions in [20]. The
definition below is an informal exposition of the more recent formalization in [54].

3In particular, there should be reasonably simple notions of sentence, deduction, model and satisfaction,
preferably with a completeness theorem, saying that the notion of deduction is fully adequate for the
notion of model, in the sense that given any set P of sentences, another sentence s can be deduced from P
if and only if every model of P satisfies s.

“In some sense, initial models are “standard” or “most prototypical” models; see below for more detail.



thus is not a logical programming language, is just too complex. Strictly speaking, most
functional programming languages are not logical programming languages in our sense, since
they have features which are not consistent with any simple deductive or model-theoretic
semantics®.

Although equational deduction by undirected replacement of equals by equals can be
very inefficient, directed replacement (i.e., term rewriting) can be much faster. For exam-
ple, [62] claims speeds comparable to compiled Lisp on sequential machines for a (restricted)
class of equations, and the Rewrite Rule Machine Project at SRI is developing a parallel
architecture on which term rewriting promises to be much more efficient than conventional
languages on conventional machines [51, 31]; see also [46] for a survey of efficient imple-
mention techniques for higher order functional programming. Term rewriting provides a
complete deductive system for equality, and any expression reduces to a unique “canoni-
cal form” (one that cannot be further rewritten), provided certain simple conditions are
satisfied®. Thus, the proof theory of order-sorted equational logic developed in this paper
gives efficient term rewriting in two different ways, yielding two different OBJ systems:

e OBJ2 [23] reduces order-sorted rewriting to many-sorted rewriting using results in
Section 4 and [23].

e OBJ3 uses a more efficient operational semantics that does order-sorted term rewriting
directly [48].

1.3 Retracts

In a strongly typed programming language, certain expressions may fail strong type check-
ing, even though intuitively they have a meaningful value. For example, if the factorial
function is only defined for natural numbers, then the expression ((- 6)/(- 2))! is not
well-formed, since the argument of the factorial function is a rational number. However,
we would like to give such an expression the “benefit of the doubt” at run-time, since it
might actually evaluate to a natural (in this case, it evaluates to 3). Retracts provide this
flexibility by lowering the sort of a subexpression to the required subsort. In this example,
the parser inserts the retract function symbol,

TRational,Natural ° Rational -> Natural

to fill the gap, yielding the expression (Tgationainatura1 ((= 6)/(= 2)))!. Retracts only
disappear if their argument has the required sort. This is accomplished by “retract equa-
tions” of the form

rss(T) =

where s’ < s and z is a variable of sort s’. Otherwise, the retract remains, providing an
error message that pinpoints exactly where the problem occurred. For example, the ex-
pression 7 + (((- 3)/(- 9))!) evaluates to 7 + (TRationalNatura1 (1 / 3))!. The basic
result about retracts asserts its soundness, in the sense that adding retracts and retract
equations to an order-sorted specification is a conservative extension, i.e., the original equa-
tional deduction and standard model are not disturbed. Retracts combine the flexibility of
untyped languages with the discipline of strong typing.

5For example, ML has assignments and exceptions, while Miranda has ad hoc coercions among various
kinds of numbers, as well as lazy pattern matching.

5These conditions are that the equations, when viewed as rules, are terminating and Church-Rosser; in
the order-sorted case, one must also assume that the rules are sort-decreasing.



1.4 Exceptions and Partial Operations

It is very difficult to handle exceptional expressions, such as division by zero or the top
of an empty stack, within a strong typing discipline. For example, there is no satisfactory
way to specify a type as simple as stack of natural number, because top(empty) should be
a natural number but isn’t. Rational numbers are even worse, because avoiding division
by zero requires heavy use of “hidden functions” and “error constants.” However, OSA
provides very simple solutions to all these problems. For stacks, it suffices to specify a
subsort of nonempty stacks, NeStack < Stack, such that top and pop have NeStack as their
argument sort. Similarly, for rational numbers, it suffices to specify a subsort NzRational
< Rational of nonzero rationals such that division has NzRational as its second (divisor)
argument sort.

OSA supports in a natural way many different styles for dealing with errors and partial
operations. The two examples discussed above make the operations well-defined by specify-
ing an appropriate domain subsort. More generally, the domain of a partial operation may
be specified by a condition; for example, to compose two paths in a graph, the end vertex
of the first path should coincide with the source vertex of the second. Such conditions are
called sort constraints. In other cases, the best approach may be to provide an error
supersort. For example, an operation to read the value, of sort Value, of an array in
a given position could have value sort Value?, a supersort of Value, that contains error
messages for attempting to read at positions where no value is stored. Part II of this paper
will cover all these different approaches and their semantics, also discussing how they relate
to other solutions, such as partial algebras and error algebras.

1.5 Constructors, Selectors, Multiple Representations and Coercions

Structured data are generally composed by constructors and decomposed by selectors. The
inadequacy of strong typing for the stack example is a special case of what we call the
constructor-selector problem: for a given constructor, to define operations that retrieve
its components. Although this problem is insoluble in MSA (many-sorted algebra), it has
a simple solution in OSA [29].

There are also many problems where one wants to represent data in more than one way,
and then convert freely among the representations, using whichever is more convenient
or efficient in a given context. This is multiple representation; for example, consider
Cartesian and polar coordinates for points. There are other problems where one wants
to convert from one sort of data to another in an irreversible way; for example, to apply
integer addition to two rational numbers, one might first truncate them; this illustrates
coercions. Multiple representation is a special case of coercion, since the selectors for one
representation applied to data of another can be considered mediated by coercions that
change the representation. The difference is that conversions between multiple representa-
tions are necessarily reversible, i.e., are isomorphisms. OSA also provides an initial algebra,
semantics for all these constructions [29].

1.6 About this Paper

After introducing the basic concepts of OSA, this paper gives a detailed account of order-
sorted equational deduction, including a completeness theorem and an initial algebra con-
struction for conditional equations. This machinery is then applied to show that adding
retracts is a conservative extension. A reduction theorem shows that encoding order-sorted
algebras as many-sorted algebras yields an equivalence of categories, which can then be ex-
ploited to prove a general existence theorem for initial algebras (it applies even when terms
do not have a least sort) as well as simple proofs of OSA McKinsey-Malcev Quasivariety



and Birkhoff Variety Theorems. A final section compares our notion of order-sorted algebra
to others in the literature. To help the reader’s intuition and illustrate the expressive ease
of OSA, a number of examples are given using an OBJ-like syntax. Appendix A gives a
more ambitious example, OBJ code for a number hierarchy from the naturals up to the
quaternions.

This paper has been a long time in gestation. The first paper on order-sorted algebra
[18] was written in 1978, but never published because it seemed so possible and desirable
to simplify and generalize its approach. The present paper finally fulfills the promise of
[18], with suitable simplifications and generalizations, and it also treats some new topics,
including order-sorted equational deduction and model-theoretic results about varieties and
quasi-varieities. Several versions of the present paper have been circulated fairly widely;
their titles are slight variations of the current title, and their dates include 2 March 1985,
22 October 1986, and 17 May 1988. The last of these reflects our decision to split the paper
into three parts, as further discussed in the subsection below. In the meantine, a rather
large literature has grown up around order-sorted algebra and its applications, and trying
to take proper account of it has slowed us down further.

1.6.1 Brief Overview of Subsequent Parts

Part IT of this paper will consider exception handling and sort constraints in detail, in-
cluding several error recovery and error specification disciplines and their soundness, and
comparing retracts, error supersorts and strict and unsafe operations. It will also discuss
the very important topic of sort constraints, which permit defining subsorts by equational
conditions. The main theorem for sort constraints is an initial algebra construction reducing
the problem to order-sorted equational logic. Part III will give an algebraic semantics for
parameterized order-sorted abstract data types with the related concepts of theory, view
and module expression, as in OBJ [14, 15] and Clear [3, 4]. This supports the effective
integration of the programming and assertional aspects of OBJ, which make it a “wide
spectrum” language.
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2 Order-Sorted Algebra

This section contains the most basic definitions and results of OSA, including signature,
algebra, homomorphism, term, least sort of a term, initiality, equation, satisfaction, subal-
gebra, quotient, congruence, image, the Homomorphism Theorem, and product.

2.1 Signatures

The notation of sorted (also called “indexed”) sets greatly facilitates the technical develop-
ment of both MSA and OSA. Given a “sort set” S, an S-sorted set A is just a family of
sets A, for each “sort” s € S; we will write {4, | s € S}. Similarly, given S-sorted sets A
and B, an S-sorted function f: A — B is an S-sorted family f = {fs: A; — Bs | s € S}.

In the order-sorted case, S is a partially ordered set, or poset, i.e., there is a binary
relation < on S that is reflexive, transitive, and antisymmetric, in the sense that z < y and
y < z imply z = y. Every poset also has an associated relation <, defined by z < y iff z <y
and z # y, that is transitive and antireflexive in the sense that —(z < z). We will often
use the extension of the ordering on S to strings of equal length in S* by s1...s, < s...s],
iff s; < s} for 1 < i < n. Similarly, < extends to pairs (w, s) in §* x S by (w, s) <(u',s’)
iff w <w' and s < s’. (These are the orderings that arise from poset products.)

Definition 2.1 A many-sorted signature is a pair (S,X), where S is called the sort
set and ¥ is an §* x S-sorted family {3, s | w € S*and s € S}. Elements of (the sets in)
Y are called operation (or function) symbols, or for short, operations. An order-sorted
signature is a triple (S, <, ¥) such that (S, X) is a many-sorted signature, (5, <) is a poset,
and the operations satisfy the following monotonicity condition,

0 € Y11 N Vw22 and wl < w2 imply s1 < s2.

When the sort set S is clear, we write ¥ for (S,X), and when the poset (S,<) is clear, we
write ¥ for (S,<,3). When o € %, s we say that ¢ has rank (w, s), arity w, and (value,
or result, or coarity) sort s.

We may write o: w — s for o € X, ; to emphasize that o denotes a function with arity
w and sort s. An important special case is w = A, the empty string; then o € 3, ; denotes a
constant of sort s. Notice that the monotonicity condition excludes overloaded constants,
because A = wl = w2 implies s1 = s2. O

Example 2.2 (Lists of Integers) We give an order-sorted signature for lists of integers,
assuming that the sort Int of integers is already defined. The subsort NeList of nonempty
lists is introduced so that the (traditionally partial) head and tail operations can be total
on this subsort. The notation used in this example (and in subsequent examples) supports
a powerful and flexible “mixfix” operation syntax; in particular, it allows prefix, postfix,
infix and “outfix” (as in {_} for singleton set formation). Here the k' underbar character
() is a placeholder in an operation form that shows where to put an expression whose sort
is less than or equal to the k™ sort in the sort list (which occurs between the : and the ->
signs); the value sort follows the ->. Also, < is written < for typographic convenience. All
these syntactic conventions follow OBJ.

sorts NelList List .

subsorts Int < NeList < List

op nil : -> List .

op - - : List List -> List .

op - - : NelList List -> Nelist .
op head : Nelist -> Int .

op tail : NelList -> List .



The double underbar operation form defines a juxtaposition notation for concatenation of
lists. This concatenation operation is subsort polymorphic, and would be ambiguous in an
ordinary many-sorted signature. To fully describe the intended model, we need more than
just a signature, we also need equations, algebras, and initiality; these are introduced in
the subsections below. O

Given an operation symbol ¢ and a lower bound w0 for the sorts of its arguments, we
can consider the following three conditions:

(1) There is a least arity for o that is > w0.
(2) There is a least rank for ¢ among those with arity > w0.
(3) There is a least sort for o among those with arity > w0.

It turns out that (1) and (2) are equivalent because of monotonicity, and that both imply
(3). Signatures satisfying (1) are quite basic to our exposition, and are called regular.
Regular signatures both support a least sort for terms, and extend the usual word (or
term) algebra construction to OSA (see Section 2.3). Signatures satisfying (3) are called
preregular, and are discussed further in Section 5.2 below.

Definition 2.3 An order-sorted signature X is regular iff given ¢ in 3, s and given
w0 < wl in S* there is a least rank (w, s)€ S* x S such that w0 < w and g€%,, 5. O

Regularity allows a strong form of subsort polymorphism “locally,” while still permitting
ad hoc polymorphism “globally” (Section 1.1.1 explained these terms); for example, + can
denote addition over the complex numbers and its many subtypes with subsort polymor-
phism, as well as Boolean exclusive or with ad hoc polymorphism. The signature in Example
2.2 above is regular, but it would not be if an operation _ _ of rank (ListNeList,NeList)
were added to it. We now give a more precise statement of some relations among the three
conditions above:

Fact 2.4 An order-sorted signature X is regular iff given ¢ in ¥, 41 and given w0 < wl in
S* there is a least arity w € S* such that w0 < w and o€, s for some s € S. Moreover,
if ¥ is regular then given ¢ in X1 51 with w0 < wl there is a least sort s € S such that
0 € Yy,s for some w € §* with w0 < w, and this s is the same one that appears in the
least rank (w,s) for ¢ with w > w0; thus, regularity implies preregularity.

Proof: The “only if” is immediate, while “if” follows from monotonicity. The other
assertions are also easy. O

When the poset of sorts satisfies a descending chain condition (and thus in particular,
when it is finite), there is a combinatorial condition that is equivalent to regularity. (Figure
1 illustrates the relations among the arities and sorts in this result.)

Definition 2.5 A poset (S5, <) satisfies the ascending chain condition, or is Noethe-
rian, iff there is no strictly increasing infinite chain s1 < s9 < ... < 85, < ... in (5, <).
Similarly, (S, <) satisfies the descending chain condition, or is coNoetherian, iff there
is no strictly decreasing infinite chain s; > s9 > ... > 8, > ... in (5, <). O

Lemma 2.6 An order-sorted signature ¥ over a coNoetherian poset (S, <) is regular if
and only if whenever o € X1 51 N Xy2 52 and there is some w0 < wl, w2 then there is some
w < wl, w2 such that o € ¥, s and w0 < w.



Note: Diagonal and vertical lines indicate sort inclusions, while horizontal arrows
indicate instances of the operation symbol o.

Figure 1: Visualizing Lemma 2.6

Proof: The “only if” part is easy. For the “if” part, let us say that a pair (w, s) “satisfies
condition P” iff o € £, , and w0 < w. Then ¥ is regular iff (w1, s1) satisfies P implies
there is a least (w, s) satisfying P. So we now suppose that there is some (w1, s1) satisfying
P but there is no least (w,s) satisfying P. Then in particular, (wl,sl) cannot be least
for P, and so there is some (wl’, s1') satisfying P such that (wl’,s1’)} (w1, s1). Then by
assumption, there is some (w2,s2) < (wl, sl) satisfying P. Iterating this process yields
an infinite descending chain (w1,s1) > (w2,s2) > ... > (wn, sn) > ..., which contradicts
the coNoetherian assumption. (This last step uses the easy to check fact that any finite
product of coNoetherian posets is coNoetherian.) O

2.2 Algebras

We now turn to the models that provide actual functions to interpret the operation symbols
in a signature.

Definition 2.7 Let (S,Y) be a many-sorted signature. Then an (S, X)-algebra A is a
family {A; | s € S} of sets called the carriers of A, together with a function A,: A, — A,
for each o in X, ; where A,, = A X ... X Ay, when w = sl...sn and where A,, is a one
point set when w = .

Let (S,<,%) be an order-sorted signature. Then an (S, <,X)-algebra is an (S, X)-
algebra A such that

1. s< s"in § implies A; C Ay and

2. 0 € Ey1,51 N By2,s2 and wl < w2 imply Ay: Ay1 — As1 equals Ay: Ayo — Ago on
Apt.

Both of these are monotonicity conditions. When the sort set S is clear, (S, ¥)-algebras
may be called many-sorted X-algebras; similarly, when (S, <) is clear, (S, <, X)-algebras
may be called order-sorted ¥-algebras. Also, we may write AY"® for A,: A, = A,. O

Many different ways to define order-sorted algebras have by now appeared in the lit-
erature. However, most of them are either less general (for example, they fail to admit
overloading) or else are more complex, as discussed in Section 5 in much more detail.

Example 2.2: (continued) If we let Z denote the set of all integers, then the algebra that
we have in mind for the List of Integers signature has Apisy = Z* (all lists of integers),
Aperist = ZT (the non-empty lists), Ay = Z (the lists of length 1), nil = X (the empty
list), _ _ as concatenation, and head and tail as expected. Note that Z C ZT C Z*. O
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Stacks can be described in a very similar way, with pop and top partial operations defined
only on the non-empty stacks; see Example 2.15 in Section 2.4.

Definition 2.8 Let (5, X) be a many-sorted signature, and let A and B be (S, ¥)-algebras.
Then an (S, ¥)-homomorphism h: A — B is an S-sorted function h = {hs: A; — B |
s € S} satisfying the following homomorphism condition

(1) hs(AP*(a)) = BY*(hyw(a)) for each 0 € 3, s and a € A,

where hy,(a) = (hs1(al), ..., hg,(an)) when w = sl...sn and a = (al,...,an) with ai € A
for i=1,...,n when w # A. If w = A, condition (1) specializes to

(1) hy(A2*) = BY.

(S, X)-algebras and (5, ¥)-homomorphisms form a category that we denote Algy. When
the sort set S is clear, (S, ¥)-homomorphism may be called just (many-sorted) X-homomor-
phisms.

Let (S,<,X) be an order-sorted signature, and let A, B be order-sorted (5, <,X)-
algebras. Then an (S, <,¥)-homomorphism h: A — B is an (S5,X)-homomorphism
satisfying the following restriction condition

(2) s < s and a € A imply hg(a) = hg(a).

When the poset (S, <) is clear, (5, <, ¥)-homomorphisms are also called (order-sorted) -
homomorphisms. The (S, <, ¥)-algebras and (5, <, ¥)-homomorphisms form a category
that we denote OSAlgy. O

Since, by definition, every (5, <,X)-algebra is an (S, X)-algebra and every (S, <, ¥)-
homomorphism is an (S, ¥)-homomorphism, there is a “forgetful” functor from OSAlgs to
Algy,. Notice the slight abuse of language whereby ¥ denotes two different signatures: an
order-sorted signature (S, <,3) in OSAlgy and a many-sorted signature (S,X) in Algy.
Also notice that OSA properly generalizes MSA, in the sense that any many-sorted (5, ¥)-
algebra is an order-sorted (S, <,X)-algebra for < the trivial ordering on S with s < ' iff
s = s'. Indeed, with this ordering on S we have that OSAlgy, = Algy, and the forgetful
functor OSAlgy, — Algy, is the identity.

Injective and surjective are defined for an order-sorted X-homomorphism f: A — B just
as for the many-sorted case: f is injective iff f; is an injective function for each s € S,
and f is surjective iff f; is surjective for each s € S. Similarly, f is an isomorphism iff
f is both injective and surjective. Just as in the many-sorted case we have

Lemma 2.9 An order-sorted ¥-homomorphism f: A — B is an isomorphism iff there is
an order-sorted ¥-homomorphism f': B — A such that f lof=14and fof ! =1p.

Proof: Since the “if” part is easy, we will just show the “only if” part, using the well-
known fact that the desired result holds for many-sorted algebra. This gives a many-sorted
Y-homomorphism f~!: B — A satisfying the desired two equations. Now we only need
to check that f~! satisfies the restriction condition of Definition 2.8. Let b € B, and let
s < s'. Then b = fs(a) for some a € As and also b = fy(a) since f is order-sorted. Thus

fit)y=a=f;'(b). O

11



2.3 Terms

This subsection shows that terms over regular signatures have a well-defined least sort, and
also that the standard MSA term algebra construction gives an initial order-sorted algebra.
We first review the inductive construction of the many-sorted term algebra 7% using the
same notation as in [57], except that we will be more pedantic, using ( and ) to denote
parentheses used as formal syntactic symbols; however, this pedantry is only temporary. If
3 is a many-sorted signature with sort set S, then:

b 2)\,5 - TE,S;

e ifoc € ¥y, and if ti € Ty 4 for 4 = 1,...,n where w = sl...sn with n > 0, then (the
string) o(tl...tn) is in Ty ;.

Now given an order-sorted signature ¥, we similarly construct the order-sorted %-term
algebra 7Ty as the least family {7x s | s € S} of sets satisfying the following conditions:

e Xy CTssforseS;
o Tow CToy if 8 <s;

o ifo € ¥y s and if 17 € Ty 5; where w = sl...sn # A, then (the string) o(t1...tn) € Ts .

Also,

o for 0 € ¥y, 5 let T5: Ty — T, send t1, ..., tn to (the string) o(tl...tn).

Thus we can write o(t1, ...,tn) for o(t1...tn).

Clearly Ty, is an order-sorted X-algebra. Notice that Ts,s is not in general equal to Tk ,
or even to |Jy<,T5 . Also notice that it is quite possible that 7x s = @ for some s, i.e.,
that there are no ground terms of sort s. Ty is a kind of order-sorted Herbrand universe
construction; unfortunately, some authors insist on adding a constant if none is otherwise
provided, thus destroying the initiality of their construction.

A given term ¢ in an order-sorted term algebra can have many different sorts. In
particular, if ¢ € Ty has sort s, then it also has sort s’ for any s’ > s; and because an
operation symbol o may have different ranks, a term o(¢1,...,tn) can even have sorts that
are not directly comparable. One unfortunate consequence of such ambiguity is that 7y
may fail to be initial, just as in the many-sorted case T may fail to be initial if X is
ambiguous. However, this problem disappears for regular signatures.

Proposition 2.10 Given a regular order-sorted signature %, for every’ ¢ € Ty, there is a
least s € S, called the least sort of ¢t and denoted LS(t), such that t € Tx .

Proof: We proceed by induction on the depth of terms in 7x. If ¢ € Ty has depth 0,
then t = o for some o € ¥, 41 and so by regularity with w0 = wl = A, there is a least
s € S such that o € X, ;; this is the least sort of . Now consider a well-formed term
t = o(tl...tn) € Tx of depth n + 1. Then each ti has depth < n and therefore by the
induction hypothesis, has a least sort, say si; let w0 = sl...sn. Then o € Yy, for some
w',s" with ' < s and w0 < w', and by regularity, there are least w' and s’ such that
0 € By ¢ and w' > w0; this least s’ is the desired least sort of ¢. O

This result can be generalized by weakening the notion of regularity to preregularity.
In fact, preregularity is actually equivalent to the existence of a least sort for each term (by
Proposition 5.2 in Section 5.2). We now turn to the important issue of initial algebras.

"By convention, for A a X-algebra, a € A means a € A; for some s € S.
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Definition 2.11 Let ¥ be an order-sorted signature. Then an order-sorted X-algebra
is initial in the class of all order-sorted 3-algebras iff there is a unique order-sorted -
homomorphism from it to any other order-sorted 3-algebra. O

Theorem 2.12 Let ¥ be a regular order-sorted signature. Then 7y is an initial order-
sorted X-algebra.

Proof: In this proof we write 7 for Tx. Let A be an order-sorted Y-algebra; then we
must show that there is a unique order-sorted ¥-homomorphism h: 7 — A. We will (1)
construct h, then (2) show it is an order-sorted Y-homomorphism, and finally (3) show it
is unique.

(1) We construct h by induction on the depth of terms in 7. There are two cases:
(1a) If ¢ € T has depth 0, then ¢ = o for some constant o in ¥. By regularity, o has a
least sort s. Then for any s’ > s we define

hy (o) = AMS.

(1b) If ¢ = o(tl...tn) € T has depth n + 1, then by regularity there are least w and s
with o € ¥, s where w = sl...sn # X and LS(ti) < si for i = 1,...,n. Then for any s’ > s
we define

hg (t) = AY*(hg1(t1), ..., hsp (tn)),
noting that hgi(t1), ..., hsy(tn) are already defined.

(2) We now show that A is an order-sorted ¥-homomorphism. By construction h satisfies
the restriction condition ((2) of Definition 2.8). To see that it also satisfies the homomor-
phism condition ((1) of Definition 2.8), we again consider two cases:

(2a) o € 3 5 is a constant. By regularity and monotonicity, s is the least sort of o, and
we have already defined

as needed.

(2b) We now consider a term t of depth greater than 0, and let 0 € X,y ¢ with v’ =
§'1...s'n # X be such that ¢ = o(¢1...tn) = T* (1, ...,tn). By regularity and Proposition
2.10 there are least w = sl...sn and s = LS(t) such that ¢ = o(tl...tn) = T2 5(t1,...,tn).
Then w < w' and s < s so that (2) of Definition 2.7 gives AY* = AY* on A". Thus,
using the already established fact that h satisfies the restriction condition, we have

by (o(t1...4n)) = AY5(hey (£1), ..., Ben(tn)) = AV (hg 1 (£1), ..., Byn(tn))
as needed.

(3) Finally, we show the uniqueness of h. In fact, we will show that if h': T — A is
an order-sorted Y-homomorphism, then A = h', by induction on the depth of terms. For
depth 0 consider o € ¥ ;. Then s is the least sort of ¢, and for any s > s’, we must have

L(0) = Hy(0) = Ap* = hs(0) = hy(0),
as desired. Now assuming the result for depth < n, consider a term ¢t = o(tl...tn) =
7;“"’5' (t1,...,tn) of depth n+1 with o € ¥,y ¢ and w’ = s'1...s'n. Asin (2b), there are least
w = sl...sn and s = LS(t) such that t = o(t1...tn) = T2*(t1,...,tn) and AY>* = AY* on
A", Then

13
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MOES Ag’ 7i'(h’s,1(t1), ey Bl (E00))
=AY (hg1(tl), ..., hgp(tn)) (by induction hypothesis)
= Agj’s(hsl(tl)a ceey hsn (tn))
= hy(t)
as needed. O

The terms considered above are ground terms, in the sense that they involve no
variables. We can extend the above result to so-called free algebras by considering instead
terms that may involve variables. In fact, terms with variables can be seen as a special
case of ground terms, by enlarging the signature with new constants that correspond to
the variable symbols. Let us assume that each variable comes with a given sort, so that we
have an S-sorted family X = {X; | s € S} of disjoint sets that we shall call a variable set.
Given an order-sorted signature (S, <,¥) and an S-sorted variable set X that is disjoint
from ¥, we define the new order-sorted signature (S, <,5(X)) by £(X)xs = ZxUX, and
B(X)w,s = Bw,s for w # A. Tt is easy to see that (X)) is regular if ¥ is. Now form Tyx)
and view it as an order-sorted Y-algebra just by forgetting about the constants in X; let
us denote this algebra 7s(X). The following result and proof are entirely analogous to the
MSA case [57].

Theorem 2.13 Given a regular order-sorted signature (5, <,¥), let A be a X-algebra and
let a: X — A be an S-sorted function; hereafter we call such a function an assignment.
Then there is a unique order-sorted ¥-homomorphism a*: Tx(X) — A such that a*(z) =
a(z) for each z € X.

Proof: X-algebras A with an assignment a: X — A are in bijective correspondence with
¥(X)-algebras A. Now the initiality of 7 (X) among all ¥(X)-algebras A (Theorem 2.12)
gives the desired result. O

2.4 Equations

Order-sorted algebra would be very impoverished without equations. We first give two
simple examples of what equations can do, and then we give the formal definitions; these
are somewhat more subtle than might be expected. In the examples, the keyword pair
obj...endo delimits an object and indicates that initial algebra semantics is intended.

Example 2.14 (Bits)

obj BITS is
sorts Bit ErrBit List ErrList .
subsorts Bit < List < ErrList .
subsorts Bit < ErrBit < ErrList .
ops 0 1 : -> Bit .
op nil : -> List .
op - - : List List -> List .
op head : List -> ErrBit
op tail : List -> ErrList .
vars L L’ L’’ : List .
var B : Bit .
eqnil L =1L .
eq L nil =L .
eq L (L’ L??)
eq head(B L)=
eq tail(B L)=
endo

(L L’) L2

[ s I |
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What is interesting here is the way the “error supersorts” ErrBit and ErrList are used
in head and tail; in the intended interpretation, elements that are in ErrList but not
in List serve as error messages. An alternative approach follows Example 2.2 by defining
a subsort NeList as the domain for head and tail; this would have made ErrBit and
ErrList unnecessary. Also note that Bit is a subsort of the non-empty lists purely for
syntactic convenience, allowing us to say that 0 is itself a list. O

Example 2.15 (Stack of Integers) This example is interesting primarily because it has
previously been treated in so many different formalisms, so that comparison between for-
malisms is facilitated. We believe that no other formalism gives so simple and natural a
description as the following:

obj STACK-OF-INT is

protecting INT .

sorts Stack NeStack .

subsort NeStack < Stack .

op empty : -> Stack .

op push : Int Stack -> NeStack .

op top_ : NeStack -> Int

op pop_ : NeStack -> Stack .

var E : Int .

var S : Stack .

eq top(push(E,S)) =

eq pop(push(E,S))
endo

non
w0 m

The above examples are actually executable OBJ3 code [36]. Of course, our development
of OSA is fully general and considers arbitrary models for sets of equations over an order-
sorted signature. OBJ uses this ‘loose’ or ‘theory’ semantics to describe requirements on
actual parameters for parameterized objects. For example, a parameterized sorting object
should allow any partially ordered set as actual parameter, and a parameterized polynomial
object should allow any commutative ring for its coefficients. Initiality modulo a set of
equations is discussed in Section 3 below, but parameterization and requirement theories
are deferred to Part III of this paper.

We now develop the formalities concerning equations. Recall that by the freeness of
T=(X) (Theorem 2.13), an assignment a of values in an order-sorted X-algebra A to elements
from a variable set X that is disjoint from ¥ extends to an order-sorted ¥-homomorphism
a* to A from the Y-terms with variables in X. The OSA definition of equations is similar
to that for MSA [57], in that equations are triples (X,¢,¢') with ¢ and ¢ in Tx(X), and
an order-sorted algebra A satisfies such an equation iff a*(t) = a*(t') for each assignment
a: X — A. However, before actually giving such a definition we need to consider what sorts
to allow for the terms ¢ and ¢'. In MSA, we are forced to require that ¢ and ¢’ have the
same sort, but OSA allows more flexibility. For example, in the BITS example above, the
equation head(B L) = B has a lefthand side whose least sort is ErrBit and a righthand side
whose least sort is Bit. The following example will help to motivate a general restriction
on the form of equations.

Example 2.16

obj ABCD is
sorts ABCD .
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subsort A C < B .
subsort C < D .
opa: ->A.
opb: >
op T >
op =2
€eq
eq
eq
endo

O o P A0
nn
Qo o
"'Uow

These equations do not involve any variables. To say that an algebra H satisfies them
presumably means that h4(a) = hp(b) = he(c) = hp(d) for h: Ty, — H the unique order-
sorted homomorphism (where ¥ is the signature of the example). Given these equations,
one expects to be able to “replace equals by equals” and deduce that the equation a = d
holds, even though the sorts A and D are not comparable in the sort ordering®. In fact,
under the notion of satisfaction suggested above, the equation a = d is satisfied by any
algebra H that satisfies the original equations. This might suggest that we only require
that the sorts of the terms ¢ and ¢ in an equation lie in the same connected component® of
the poset (S, <). O

Definition 2.17 For (5, <,Y) a regular order-sorted signature, a X-equation is a triple
(X,t,t") where X is a variable set and ¢,#' are in Ty, xy with LS(t) and LS(#') in the same
connected component of (S, <). We will use the notation (VX) ¢t = ¢. An order-sorted
Y-algebra A satisfies a X-equation (VX) ¢t = ¢ iff als) (t) = a*LS(t,)(t' ) in A for every
assignment a: X — A. Similarly, A satisfies a set [' of Y-equations iff it satisfies each
member of T'; in this case, we say that A is a (X,')-algebra. When the variable set X can
be deduced from the context (for example, if X contains just the variables that occurr in ¢
and t', with sorts that are uniquely determined or else have been previously declared) we
allow it to be omitted; that is, we allow ungquantified notation for equations'®.

Order-sorted conditional equations generalize order-sorted equations in the usual way,
i.e., they are expressions of the form (VX) ¢t = ¢’ if C, where the condition C is a finite
set of unquantified X-equations involving only variables in X (when C = (), conditional 3-
equations are regarded as ordinary X-equations). An order-sorted X-algebra A satisfies the
equation (VX) ¢t = ¢’ if C iff for each assignment a: X — A such that aLs) (V) = azs(v,)(fu’)
in A for each equation v = v’ in C, then also als) (t) = azs(t,)(t’) in A.

Given a signature ¥ and a set I" of (possibly conditional) ¥-equations, we let OSAlgs 1
denote the category of all (X, T')-algebras, with all 3-homomorphisms among them. O

Although these notions of equation and satisfaction seem quite reasonable for OSA,
and in particular seem general enough to support equational deduction, there is a subtle
difficulty: equational satisfaction is not closed under isomorphism, i.e., an order-sorted
algebra A may satisfy an equation that is not satisfied by an isomorphic algebra B. The
following exhibits this curious phenomenon:

Example 2.18

8But notice that the sorts are comparable for each equation in the BITS and STACK examples.

9Given a poset (S, <), let = denote the transitive and symmetric closure of <. Then = is an equivalence
relation whose equivalence classes are called the connected components of (S, <).

0However, the reader should be aware that satisfaction of an equation depends crucially on its variable
set [57].
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obj ABC is

sorts AB C .
subsorts B < A C .
opa: ->A.
opb: ->B.
opc: —->C.
eqa=c.

endo

Letting ¥ be the signature of this example, the term algebra 7y has (7z)a = {a,b},
(Tx)B = {b} and (Tx)c = {b,c} does not satisfy the equation a = c. However, the order-
sorted Y-algebra H with Hy = He = {b,d} and Hp = {b}, with the constants a,b,c
interpreted as d, b, d (respectively) does satisfy a = c, even though the unique order-sorted
¥.-homomorphism h: Ts; — H is a Y-isomorphism. O

The desire to be rid of this analomy motivates the following:

Definition 2.19 A poset (5, <) is (upward) filtered iff for any two elements s, s’ € S there
is an element s” € S such that s,s’ < s”. A partially ordered set S is locally filtered iff
each of its connected components is filtered. An order-sorted signature (5, <,Y) is locally
filtered iff (S, <) is locally filtered, and is coherent iff it is locally filtered and regular. O

We will show below that for coherent signatures, satisfaction is “abstract” in the sense
of being closed under isomorphism. Coherence guarantees that all sorts in a connected
component “cohere” in the sense that any finite set of them can always be reconciled by
appeal to a bigger sort; “incoherence” causes the trouble in Example 2.18. Any many-sorted
signature is coherent, since the trivial ordering (s < s’ iff s = &) is always locally filtered
and regular. In many examples, the sort poset is Noetherian.

Proposition 2.20 A Noetherian poset is locally filtered if and only if each connected
component has a maximum element.

Proof: The “if” part is obvious. For the “only if” part, assume that there is no maximum
element in a given connected component C' and pick any element s; € C. Since s1 is not a
maximum, there must be an element s} € C such that s} £s1. Since S is locally filtered,
we get an element so > s1,s] such that s; < so. We can now iterate this process to get
a strictly increasing sequence s; < s9 < ... < 8, < ... that contradicts the Noetherian
assumption. O

Proposition 2.21 Given a coherent signature 3 and isomorphic >-algebras A and B, then
A satisfies an equation (VX) ¢ = ¢’ if and only if B does.

Proof: By symmetry of the isomorphism relation, it is enough to prove the “only if”
part. Assume that A satisfies (VX) ¢t =¢' and let f: A — B be an isomorphism. Then any
assignment b: X — B can be written b = f o a for some assignment a: X — A. Initiality
now implies that b* = f o a*. Let s > LS(t), LS(t'). Then

b3 (t) = fala3(t)) = filag(t) = b3(¥)

as desired. O
This result generalizes easily to the satisfaction of conditional equations.
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How restrictive is coherence? In practice, not at all. In fact, coherence can be auto-
matically ensured by a computer implementation, just by adding some new top elements to
the signature given by a user: given a regular order-sorted signature ¥, extend it to a co-
herent signature coh(X) identical to ¥ except for adding a new sort uc for each nonfiltered
connected component C. Note that for each sort s in the original set of sorts we then have
Teon(s),s = T,s and for the new sorts uc we have Teop(s)ue = Usec Ts,s- This approach is
even more flexible and general than requiring a universal maximum of all sorts as in [23].
Intuitively, the sorts in a connected component form a semantically related “local universe”
of discourse.

One benefit of requiring signatures to be coherent is a great simplicity and flexibility
in the treatment of equality, since we can always assume that ¢ and # have the same
sort whenever they appear in an equation ¢ = # by going to a common supersort. This
does require that ¢t and ¢’ lie in the same connected component, but we do not consider
equations across different components to be meaningful; moreover, even this condition could
be dropped by adding a universal sort, as discussed in Section 5.

2.5 Subalgebras, Congruences, Quotients and Products

This subsection gives OSA forms of some familiar MSA concepts, including subalgebra,
congruence relation, quotient algebra, kernel, image, and product algebra. It also proves
the Homomorphism Theorem and the universal properties of quotients and products.

Definition 2.22 For (S,%) a many-sorted signature and for A a many-sorted ¥-algebra,
a many-sorted Y-subalgebra B of A is an S-sorted family of subsets B; C A; for each
s €S such that

(1) given o € Xy, s with w = sl...sn and bi € B; for i = 1,...,n, then A,(bl,...,bn) € By;
in particular, when w = X then A, € B;.

For (S, <,Y) an order-sorted signature and A an order-sorted X-algebra, an order-sorted
Y-subalgebra B of A is a many-sorted Y-subalgebra B of A such that

(2) Bs C By whenever s < s'.

a

Definition 2.23 For (S,X%) a many-sorted signature and A a many-sorted -algebra, a
many-sorted X-congruence = on A is a S-sorted family {=;| s € S} of equivalence
relations =; on A such that

(1) given o € %, s with w = sl...sn and given ai,a’t € Ay for ¢ = 1,...,n such that
ai =g a'i, then

Ay(al,...;an) =5 As(d'l,...;a'n).

For (S, <,X) an order-sorted signature and A an order-sorted X-algebra, an order-sorted
Y-congruence = on A is a many-sorted X-congruence = such that

2) given s < s’ in S and a,a’ € A; then a =5 d' iff a =, d'.
g )

a

Proposition 2.24 Let X be an order-sorted signature. Then
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1. The order-sorted ¥-subalgebras of an order-sorted X-algebra A form a complete lattice
under the inclusion ordering.

2. The order-sorted X-congruences on an order-sorted -algebra A form a complete
lattice under the inclusion ordering.

Moreover, in these lattices greatest lower bound is computed by set intersection. (These
results are well known for MSA.)

Proof: By the following lemma, it suffices to show that any intersection of ¥-algebras or
of ¥-congruences is a 3-congruence, which is easy in this case. O

Lemma 2.25 A class C of subsets of a set C' is a complete lattice under set inclusion if it
is closed under arbitrary set-theoretic intersections, including intersection over the empty
family of subsets, which by convention is the maximum element of C; moreover, greatest
lower bound is then computed by set intersection. O

Definition 2.26 Let f: A — B be a many-sorted X-homomorphism. Then the kernel of
f is the S-sorted family of equivalence relations =¢ defined by a =5, o' iff f;(a) = fs(a');
it will be denoted ker(f). O

Proposition 2.27 A kernel is a many-sorted congruence. If f: A — B is an order-sorted
Y-homomorphism, then ker(f) is an order-sorted ¥-congruence.

Proof: Given an S-indexed function f: A — B, then each =, is an equivalence relation.
To prove the congruence property (1), let o € %, with w = sl...sn and assume that
ai =5, d'i, i.e., that fs(ai) = fs(a’i) for i =1,...,n. Then

fs(As(al,...;an)) = By(fs1(al), ..., fsn(an)) =

B, (fs1(a'1),..., fon(a'n)) = fs(As(a'l,...;a'n))
so that

Ay (al,...,an) =5, Ay(d'l,...,a'n)
as desired. When f is order-sorted, we have to check the congruence property (2). This
follows from the fact that fs(a) = fg(a) and fs(a’) = fg(a') whenever s < ¢ in S and
a,a’ € As. O

Definition 2.28 The image of a ¥-homomorphism f: A — B is the subalgebra f(A) with
f(A)s = f(As) for each s € S. O

Fact 2.29 If f: A — B is an order-sorted X-homomorphism, then f(A) is an order-sorted
subalgebra.

Proof: To check condition (1) of the definition of subalgebra, let o € ¥, with w =
sl...sm, let bi € f(A)s for i = 1,...,n, and let ai € Ag; such that bi = f;(ai) fori =1,...,n.
Then B, (bl,...,bn) € f(A)s since By(bl,...,bn) = fs(As(al,...,an)). For the order-sorted
case, we have to check condition (2), but this is an easy set-theoretic consequence of the
fact that f is order-sorted. O

We now define the quotient of an order-sorted algebra by a congruence relation and
(more generally) by a set of relations. This construction is simpler for locally filtered
signatures, but it can be generalized to arbitrary signatures.

Definition 2.30 For (S, <,3) a locally filtered order-sorted signature, A an order-sorted
Y.-algebra, and = an order-sorted Y-congruence on A, the quotient of A by = is the
order-sorted Y-algebra A/= defined as follows: for each connected component C, let A¢c =
Usec As and define the congruence relation =¢ by a =¢ o' iff there is a sort s € C such
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that a =5 a’. Then =¢ is clearly reflexive and symmetric. It is transitive since a =, o’ and
a =g d" yield a =4 a" for s" > s,s’. The inclusion A; C A¢ induces an injective map
As/=s— Ac/=c since for a,a’ € A; we have a =; o' implies a =¢ o’ by construction, and
conversely a =¢ a' implies a =y o' for some s’ € C, and taking s” > s,s’ it also implies
a =g a' and therefore it implies a =5 o’ by property (2) of the definition of order-sorted
congruence. Denoting by g¢ the natural projection gc: Ac — Ac/ =c¢ of each element
a into its =c-equivalence class, we define the carrier (A/ =) of sort s in the quotient
algebra to be gc(As). The order-sorted algebra A/= comes equipped with a surjective
order-sorted ¥-homomorphism q: A — A/= defined by restriction of the g¢ to each of the
sorts, called the quotient map associated to the congruence =. The operations are defined
by (4/=)s([all,...,[an]) = [As(al,...,an)], which is well defined since = is an order-sorted
Y-congruence. O

Fact 2.31 Under the assumptions of Definition 2.30, ker(q) = =. O

Fact 2.32 Again under the assumption of Definition 2.30, any S-sorted family R of binary
relations R; on A for s € S is contained in a smallest order-sorted Y-congruence on A.

Proof: This congruence can be expressed as the intersection in the lattice of congruences
of all order-sorted congruences that contain R. O

Definition 2.33 Given an arbitrary S-sorted family R of binary relations R; on A, for
s € S, then the quotient of A by R, denoted A/R, is the quotient of A by the smallest
order-sorted X-congruence on A containing R. O

Proposition 2.34 (Universal Property of Quotient) If 3 is a locally filtered order-sorted
signature, if A is an order-sorted Y-algebra, and if R is an S-sorted family of binary relations
R on A for s € S, then the quotient map ¢: A — A/R satisfies the following:

(1) R C ker(q), and

(2) if f: A — B is any order-sorted ¥-homomorphism such that R C ker(f), then there
is a unique ¥-homomorphism v: A/R — B such that vo g = f (see Figure 2).

Proof:

(1) follows from ker(g) being the smallest congruence containing R.

For (2), let f: A — B be an order-sorted ¥-homomorphism such that R C ker(f).
Then ker(q) C ker(f) and both are congruences so that for each connected component C
we have ker(q)c C ker(f)c and there is a unique function ve: (A/R)c — Be such that
ve o qo = fe for fo: Ac — Be defined by fo(a) = fs(a) if a € A (this is well defined by
local filtering). It remains only to check that, restricting ve to each one of the sorts s € C,
the family {v; | s € S} thus obtained is an order-sorted ¥-homomorphism. Property (2)
for order-sorted homomorphisms follows by construction. Let o € ¥, s with w = sl...sn
and let ai € Ay; for i = 1,...,n. Then (omitting sort qualifications throughout) we have

0((A/R)o (al), s [an])) = v([As (a1, ..,an)]) =

Fas(al, . am)) = By(f(al), .. f (an)) =

B, (v([al]), ..., v([an])).

We leave the case w = A for the reader to check. O

We remark that this universal property characterizes the quotient map uniquely up to
isomorphism. The following is now an easy consequence of Proposition 2.34:

Proposition 2.35 (Homomorphism Theorem) Let X be a locally filtered order-sorted sig-
nature and let f: A — B be an order-sorted ¥-homomorphism. Then A/ker(f) = f(A)
(isomorphism as order-sorted -algebras).
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Figure 2: Condition (2) of Proposition 2.34

Proof: Let f': A — f(A) denote the corestriction of f to f(A). Then by the universal
property of the quotient with R = ker(f') = ker(f), there is a (unique) v: A/ker(f) — f(A)
such that v o ¢ = f’. Then v is surjective since f’ is, and it remains to show that v is
injective. To this end (omitting sort qualifications again), suppose that v([al]) = v([a2]).
Then f(al) = f(a2), so [al] =[a2]. O

We shall say that an order-sorted algebra C' is an homomorphic image of another
order-sorted algebra A iff there is an order-sorted ¥-homomorphism f: A — B such that
C = f(A). By the Homomorphism Theorem (for ¥ locally filtered), C' is a homomorphic
image of A iff C' is ¥-isomorphic to A/ = for some order-sorted ¥-congruence =.

Definition 2.36 Let (S,X) be an order-sorted signature and let A and B be many-sorted
Y-algebras. Then we define their product A x B to be the many-sorted Y-algebra with
carriers (A x B); = Ay X By for each s € S, and with (A x B),({a1,b1), ..., (@n,bn)) =
(As (a1, --yap), Bs(b1, ..., b)) for each o: s1...s, — s in 3, where each a; and b; are of sort
s; for i =1,...,n. We now define the two projections pl: Ax B — A and p2: Ax B— B
to be {pls | s € S} and {p25 | s € S} respectively, where pl;: A; x By — A; and
p2s: Ay X By — Bj are the first and second projection functions from the Cartesian product
As x Bs. Notice that pl and p2 are YX-homomorphisms. If A and B are order-sorted algebras,
then so is A x B, and the projection functions are order-sorted homomorphisms. Similarly,
we can define the product []; A; of a family {4; | ¢ € I} of many-sorted or order-sorted
Y-algebras, with projection homomorphisms p;: [[; 4; = A;. O

Proposition 2.37 (Universal Property of Product) Let A, B, C be order-sorted (or many-
sorted) X-algebras, and let gl: C — A and ¢2: C — B be order-sorted (or many-sorted)
Y-homomorphisms. Then there is a unique order-sorted (or many-sorted) ¥-homomorphism
v: C — A x B such that plov = ¢l and p2ov = ¢2. This result also generalizes to products
of arbitrary families. O

3 Order-Sorted Equational Deduction

This section gives rules of deduction for OSA with conditional equations, and proves their
completeness. This yields a construction for initial and free order-sorted algebras as quo-
tients of term algebras by the congruence generated by the rules of deduction from the
given equations, in a way that parallels MSA.

Before turning to the rules, we consider order-sorted term substitution. Given a coherent
order-sorted signature (5, <,Y) and two S-sorted variable sets X and Y, a substitution is
an S-sorted map 6: X — Tx(Y); note that this is a special case of the assignment concept
given earlier (Theorem 2.13) in which the values assigned to the variables are terms. We
adopt the convention that the unique order-sorted Y-homomorphism 6*: 75 (X) — Tx(Y)
induced by @ is also denoted 6.
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3.1 The Rules of Order-sorted Equational Deduction

Given an order-sorted signature 3 and a set I' of conditional Y-equations, we consider each
unconditional equation in I' to be derivable. The following rules allow deriving further
(unconditional) equations:

(1) Reflezivity. Each equation of the form
(VX)t=t

is derivable.

(2) Symmetry. If

(VX)t =1t
is derivable, then so is
(VX) t' =t

(3) Transitivity. If the equations
(VX)t=1t, (VX) t' =t
are derivable, then so is
(VX) t ="
(4) Congruence. 1f 0,6": X — Tx(Y) are substitutions such that for each z € X,
the equation
(VY) 6(z) = ¢'(x)
is derivable, then given ¢t € Tx(X), the equation
(VY) 6(t) = 0'(¢)
is also derivable.
(5) Substitutivity. If
vVX)t=tif C
isin T, and if 0: X — Tx(Y) is a substitution such that for each v = v in C,
the equation
(VY) 0(u) = 6(v)
is derivable, then so is
(VY) 6(t) = 6(t").

When the equations in I are unconditional, rule (5) takes the form

(5") Unconditional Substitutivity. If
(VX)t =1

isin I'; and if §: X — Tx(Y) is a substitution, then
(VY) 6(t) = 6(t")

is derivable.

Although these rules are rather compactly formulated, they correspond exactly to intuitions
that we feel should be expected for equational deduction. Of course, there are many possible
variations on this rule set; for example, see [72]. Also, order-sorted Horn clause logic is
discussed in [28], and [27] gives an overview of the equational case.

3.2 Completeness and Initiality Theorems

We now show that the above rules are sound and complete for deriving all the unconditional
equations that hold in the class of all algebras that satisfy I'. We then obtain initial and
free algebras for a set I' of conditional equations as a corollary. While the structure of our
proof is fairly traditional, it is more succinct than traditional proofs, because it exploits
the machinery of algebra rather than relying on purely syntactic arguments; for example,
it uses initiality to prove commutativity of a diagram.
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Theorem 3.1 (Completeness) Given a coherent order-sorted signature X, given ¢,¢' in
Ts(X), and given a set I" of conditional ¥-equations, the following assertions are equivalent:

(C1) (VX) t =t is derivable from T' using rules (1)-(5).
(C2) (VX) t =t is satisfied by every order-sorted X-algebra that satisfies T'.

When all equations in I' are unconditional, the same holds replacing rule (5) by rule (5').

Proof: We leave the reader to check soundness, i.e., that (C1) implies (C2); this follows
as usual by induction from the soundness of each rule of deduction separately. Here we
show completeness, i.e., that (C2) implies (C1). The structure of this proof is as follows:
We are given a X-equation e = (VX)) ¢t = t’ that is satisfied by every Y-algebra that satisfies
T', and we wish to show that e is derivable from T'; to this end, we construct a Y-algebra A
such that if A satisfies e then e is derivable from T'; then we show that A satisfies T'.

First, we show that the following property of terms ¢,¢ € T5(X); for some sort s, defines
an order-sorted X-congruence on 7x(X):

(D) (VX) t =t is derivable from T" using rules (1)-(5).

Let us denote this relation ~p(x). Then rules (1)-(3) say that ~p(x) is an equivalence
relation on Ty (X), for each sort s. By applying rule (4) to terms ¢ of the form o(z1, ..., z,)
for o € %, we see that ~r(x) is a many-sorted X-congruence. Finally, ~p(x) is also an
order-sorted Y-congruence, because property (D) does not depend upon s.

Now we can form the order-sorted quotient of 7x(X) by ~r(x), which we denote by
Tsr(X), or within this proof, just A for short. Then by the construction of A, for each
t,t' € Tx(X) we have

(%) [t] = [] in A iff (D) holds,

where [t] denotes the ~r(x)-equivalence class of .
We next show the key property of A, that

(%) (VX) t = t' satisfied in A implies that (D) holds.

Since the equation (VX) ¢ = ¢’ is satisfied in A, we can use the inclusion 7x: X — A sending
z to [z] as an S-sorted assignment to get that [t] = [t'] in A; then (D) holds by (*).

We now prove that A satisfies I'. Let (VY) ¢ = ¢’ if C be a conditional equation in T,
and let 8: Y — A be an S-sorted assignment such that 6(u) = 0(v) for each u = v in C.
Then for each s € S and each y € Y; we can choose a representative t, € Tx(X), such
that O(y) = [t,] in A. Now let ¢: Y — Tx(X) be the substitution sending y to ¢,. Then
0(y) = [¢(y)] for each y € Y, and therefore 6(t) = [¢(t)] in A for any ¢ € Tu(Y'), by the
freeness of Tx(Y) over Y.

Y

Therefore, [¢(u)] = [¢(v)] holds in A, and by the property (*), the equation (VX) ¢(u) =
¢(v) is derivable from I' using (1)-(5) for each u = v in C. Therefore by rule (5), the
equation (VX) ¢(t) = ¢(t') is derivable from I', and hence by (*), 6(¢t) = 6(¢') holds in A,
and thus the conditional equation (VY) ¢t = ¢' if C holds in A.

Since an unconditional equation is just a conditional equation whose set C' of conditions
is empty, when every equation in I is unconditional we are reduced to the simplified special
case of the above argument where only the rule (5') is needed. O
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It is interesting to notice that this theorem also gives the Completeness Theorems for
ordinary MSA, and of course for unsorted algebra, as special cases. Now the initiality and
freeness results.

Corollary 3.2 (Initiality I) Given a coherent order-sorted signature ¥ and a set I' of con-
ditional X-equations, then 75 r(0) (henceforth denoted 7xr) is an initial (X,T')-algebra,
and 7x r(X) is a free (3, T)-algebra on X.

Proof: First notice that the freeness of 75, r(X) specializes to the initiality of 75, r when
X = 0, so that it suffices to show the freeness of 7xr(X). Let A be an order-sorted
algebra satisfying I', and let a: X — A be an assignment for A. Then we have to show
that there is a unique order-sorted ¥-homomorphism a¥: Tsr(X) — A extending a, i.e.,
such that a¥(g(x)) = a(z) for each 2 € X, where ¢ denotes the quotient homomorphism g:
T=(X) = Ter(X). The existence of a* follows from the Completeness Theorem, because
the fact that A satisfies T' implies that a*(t) = a*(¢') for every equation (VX) ¢t = ¢’ that
is derivable from T' with the rules (1)-(5), and this implies that ~px)C ker(a®), and thus
by the universal property of quotients (Proposition 2.34), there is a unique order-sorted
homomorphism a¥: 75 r(X) — A with a* =a% 0 q.

The uniquenes of a® now follows by combining the universal property of Tx(X) as a
free order-sorted algebra on X with the universal property of ¢ as a quotient, as follows:
Let h: Ts,r(X) = A be another order-sorted homomorphism such that k(g(z)) = a(z) for
each z € X. Since Tx(X) is a free order-sorted algebra on X, we have a* = h o ¢, and by
the universal property of g as a quotient we have h = a¥ as desired. O

It is also worth explicitly drawing out the following consequence of our proof of the
Completeness Theorem:

Corollary 3.3 Given a coherent order-sorted signature ¥ and a set I' of (conditional) X-
equations, an equation (VX) ¢t = ¢ is satisfied by every Y-algebra that satisfies T iff it is
satisfied by 7x r(X). O

3.3 Retracts

We have already shown in the Introduction that strong typing is not flexible enough in
practice, and suggested that OSA can provide the necessary flexibility with retracts. For
example, a term such as head(tail(0 1 0 0)) is not well-formed according to the syntax
of Example 2.14 (BITS), because head’s arguments should have sort NeList but the term
tail(0 1 0 0) only has sort List, even though we know that it will evaluate to the
nonempty list 1 0 0. One might think that this is “just run-time type checking,” and
should therefore be handled by the operational semantics. However, retracts have a very
nice, purely semantic treatment as a conservative extension (see below); of course, there is
also an operational semantics, developed in joint work with Jean-Pierre Jouannaud [23].

The basic construction extends an order-sorted signature Y to another order-sorted
signature £® having the same sorts as ¥, and having the same operation symbols as ¥ plus
some new ones called retracts of the form ry ;: s’ — s for each pair s', s with s’ > s. The
semantics of retracts is then given by new retract equations of the form

(Vz) ros(z) =

where z is a variable of sort s.
The OBJ implementation inserts retracts to transform ill-formed X-terms, such as
head(tail(0 1 0 0)), that might become well-formed after reduction, into X®-terms.
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This has the effect of giving them the benefit of the doubt at parse time, by filling gaps
between actual sorts and required sorts with retracts. For example,

head(tail(0 1 0 0))
is replaced by

head (TList neList (t2i1(0 1 0 0 0)))
and is then reduced to 1 by applying the rules in BITS and a retract rule; thus the original
term is vindicated during reduction. On the other hand, the term

head(tail(tail(1)))
is temporarily accepted as the term

head(rList,NeList (tail (rList,NeList (tail(1)))))
and is then reduced to

head(rList,NeList (tail (rList,NeList (nil))))
which serves as a very informative error message. This kind of run-time typechecking is
relatively inexpensive, and together with the polymorphism provided by subsorts and by
parameterized modules'!, combines the syntactic flexibility of untyped languages with the
advantages of strong typing. In fact, unlike the untyped case, truly nonsensical expressions
can be detected at compile time and rejected, whereas any expression that could possibly
recover is allowed to be evaluated. By “truly nonsensical” we mean expresions such as
factorial(false) that contain subexpressions in the wrong connected component (as-
suming that booleans and natural numbers are in different connected components of the
sort poset) and therefore cannot be parsed by inserting retracts.

We now show that adding retracts is safe. Suppose that we begin with an order-sorted
signature ¥ and a set I' of conditional Y-equations. By adding the retract operations we
extend ¥ to a signature ¥®, and by adding the retract equations we extend I' to a set
of equations I'®. Qur requirement for retracts to be well-behaved is that the extension
(3,T) C (2%,T'®) should be conservative in the sense that

tNF(X) tifft ~re(X) tl, for all t,tl € 7-2(X)

In model-theoretic terms, this is equivalent to requiring that the unique order-sorted -
homomorphism %x: Tx,r(X) = Tge re(X) which leaves the elements of X fixed, is in-
jective. We will prove this under the following very natural assumption on the algebras
Ts,r(X): given X C X', then the unique ¥-homomorphism tx x: Ty, r(X) — Ty r(X')
induced by the composite map X — X' — T, pr(X') (first inclusion, then the natural map-
ping of each variable to the class of terms equivalent to it) is injective. We will say that
a presentation (X,T") is faithful if it satisfies this injectivity condition. Although they are
pathological, unfaithful presentations do exist, and for them the extension with retracts is
not conservative, as shown by the following example from [25]:

Example 3.4 Let X have sorts a,b,u with a,b < u, have an operation f: a — b, have
no constants of sort a, have constants 0,1 of sort b, plus +, & binary infix and — unary
prefix of sort b. Let I' have the equations —(f(z)) = f(z), y +v =y, y&y =y, y + (-y) =
1L, (~y)+y=1,9&(y) =0, (-y)&y =0, -0 = 1, =1 = 0. Then (Vz)1 = 0 is deducible
from T, where z is a variable of sort a, although (V@) 1 = 0 is not deducible from I". Thus
(%,T) is not faithful. Note that 7x r has 1 # 0 (because of the second equation) but Ty re
has 1 = 0 because of the first equation and the presence of constants of sort a such as
Tu,a(0) and 7y, 4(1). Thus, the extension (X,T') C (£%,T'®) is not conservative. O

There are simple conditions on both the signature 3 and on the equations I' that
guarantee faithfulness of a presentation (X,T'). For arbitrary T', it is necessary and sufficient

U Pparameterized modules will be the main subject of the forthcoming Part III of this paper.
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that ¥ has no quasi-empty models, which are algebras A such that A; = () for some s
but Ay # 0 for some other sort s’ [25]. For arbitrary ¥, it is sufficient that I" is a set of
confluent rewrite rules [56].

The following model-theoretic proof of the conservative extension result for faithful pre-
sentations uses naturality of the family ¥ x of morphisms, which in particular gives commu-
tativity of the following diagram for X C X', where px x+ is the unique £®-homomorphism
induced by the composite map X < X' — Tye ro(X'):

Ts,r(X) ¥x Tse re(X)
LX, X! HXx, X
Te,r(X") - Tso re(X')

Theorem 3.5 If 3 is coherent and (%, T') is faithful, then the extension (3,T') C (3%,T'®)
is conservative.

Proof: We have to show that ¢x: Tsr(X) — Tyere(X) is injective. By the above
naturality diagram plus faithfulness, it suffices to show that ¢ x:: Ts r(X') = Tse re(X')
is injective, where X’ D X is obtained from X by adding a new variable symbol of sort
s for each sort s with X; = (). Now pick an arbitrary variable symbol z¥ € X, for each
s € S. The key step is to make the (3,T')-algebra 75 r(X’) into a (£®,I'®)-algebra by
defining 7y : T, r(X")s — Tx,r(X')s to be the function that sends [¢] € Tx r(X'), to [t],
and otherwise sends it to z0. It is now easy to see that the retract equations are satisfied.
Thus the freeness of Tye re(X) implies that the natural inclusion X’ — T5r(X') induces
a unique X¥-homomorphism ¢: Tye re(X') = Txr(X’) such that ¢ o 1x is the identity.
Therefore 1 x: is injective. O

4 Reduction to Many-Sorted Algebra

This section reduces OSA to conditional MSA, thus providing a systematic way to import
OSA analogues of known MSA results. The difference is essentially one of viewpoint;
mathematically, it is an “equivalence of categories” ( this notion is defined below). This
result also implies that MSA rewriting can be used as the operational semantics of a logical
programming language based on order-sorted algebra (as in OBJ2 [14, 15]); see [23] for
details. Next, we relate OSA and MSA equational satisfaction, and get less direct proofs of
the existence of initial and free order-sorted algebras for conditional equations than those
in Section 3.2 above. We also lift the Birkhoff Variety Theorem and the McKinsey-Malcev
Quasivariety Theorem from MSA to OSA.

4.1 Reduction Theorem

The basic idea is to provide for each locally filtered order-sorted signature ¥ a corresponding
many-sorted signature ©# with a set J of ©#-equations such that being an order-sorted
Y-algebra is “essentially the same” (i.e., up to isomorphism) as being a many-sorted ¥#-
algebra satisfying J.

Given a locally filtered order-sorted signature X with sort poset (S, <), the correspond-
ing ©# has the same sort set S, has an operation symbol Ow,s € ijf,s for each o € Xy s

(including constants, where w = ), and has additional operation symbols ¢,y € Es#s,
whenever s < s’ in S, called inclusion operations. The conditional equations in J are the
following (omitting the obvious quantifier and sort information):
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1. (identity) css(z) = z, for each s € S;

2. (injectivity) z = y if ¢5 ¢ () = ¢5,¢(y), for each s < s’ in S;

3. (transitivity) cy ¢ (cs ¢ (2)) = cs 57 (), for each s < s’ < s" in S

4. (homomorphism) whenever o: sl...sn — s and o: s'1...s'n — s’ are in ¥ with s7 < ¢’

and therefore (by monotonicity) s < s’ in S, then
Cs,s! (0'51...571,5(3517 ey xn)) = 0g4'1...s'n,s' (Csl,s’l(wl)a ey Csn,s’n(xn))-

(Note that the injectivity equation is conditional.)
We can view an order-sorted Y-algebra A as a many-sorted L#-algebra A% by letting
A# = A, for each s € S, with A# | the inclusion A# C A% for each s < ' and with

A#M’S = A;: Ay — A for 0 € 3y 5. Then A# satisfies J by construction. Moreover,
this construction of A# from A extends naturally to homomorphisms, since an order-sorted
Y-homomorphism f: A — B is also a many-sorted #-homomorphism f#: A# — B# with

# = fs: A¥ — B¥. This follows because the operations o, ¢ satisfy condition (1) of
Definition 2.8 by construction, while for the operations ¢, o this is just condition (2) for f

to be an order-sorted homomorphism. In this way we get a functor
()#: OSAlgy — Algsy# ;

where Algy# ; is the category of many-sorted Y#-algebras satisfying J. The Reduction
Theorem below shows that this functor is an equivalence of categories.

Our proof of the Reduction Theorem needs some facts about filtered colimits of sets.
A filtered diagram of sets is a functor D: (S, <) — Set where (S5, <) is a filtered poset;
i.e., D is a collection of sets {D; | s € S} together with functions d, y: Dy — Dy for each
s < s"in (5, <), with d s the identity on D, for each s, and such that ds o = dg g7 0 ds ¢
whenever s < s’ < s”. The colimit of such a filtered diagram D, written colim(D), can be
computed as a quotient of the coproduct | |,cg D, (which we represent as the disjoint union
Uses Ds x{s}) by the equivalence relation = defined by (a, s) = (a’, §') iff for some s” > s, s’
in S, ds s (a) = dg g(a’). Reflexivity and symmetry of the relation = are obvious, and
transitivity follows from filtration. For each D, there is a map js: Ds — colim(D) defined
as the composition of the coproduct injection Dy — | |,cg Ds with the natural projection
into equivalence classes | |;cg Ds — colim(D), and the j; commute with the d; ¢ in the
natural way by construction. Moreover, one can now check that colim (D) with the maps
js has the following universal property of a colimit in Set of the diagram D: given maps
{fs: Ds & A | s € S} such that f; = fy od, ¢ whenever s < s, then there is a unique map
f: colim(D) — A such that fojs = f, for each s € X. We need the following result about
this construction:

Lemma 4.1 If all the d; ¢ of a filtered diagram D: (S, <) — Set are injective, then the j,
are also injective.

Proof: (a,s) = (d',s) iff ds y(a) = d; ¢ (a’) for some s' > s iff (since the d; ¢ are injective)
a=ad. 0O

Theorem 4.2 (Reduction) Given a coherent order-sorted signature ¥, then the functor
(L)#: OSAlgy — Algy# ; is an equivalence of categories, in the sense that there is another
functor (_)*: Algy# ; — OSAlgy, such that for each A in OSAlgy, and B in Algy# ; there

afe—xsemex—gh*s—msﬂél—a%l#'—aﬂd—B—a B*# that are natural'? in A and B, respectively.
2The condition for an isomorphism to be natural is spelled out in the body of this proof; see also [50],

Theorem IV .4.
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Proof: Given B in Algy# ; we define B® as follows: First, notice that, for each connected
component C of S, the sets {B; | s € C} together with their ¢, ¢ form a filtered diagram,
and the maps js into the filtered colimit B¢ are injective by Lemma 4.1. Now define
B? = js(Bs), and given o € 'y 4, define By: B, .. — B2 by

B3 (js1(b1), --es Jsn (bn)) = s (B (b, ..., bn)).-

Checking that B*® in fact satisfies the conditions of an order-sorted algebra is an exercise
in the use of the equations J and the commutation of the j, with the ¢, o.

This construction becomes a functor as follows: first notice that given a connected
component C' of S and given h: A — B in Algys ; the maps hs constitute a natural
transformation between two diagrams on the poset C, and therefore they induce a map
hg: A% — B¢ between their colimits: on elements, the map h{, is defined by hl([(a, s)]) =
[(hs(a), s)]. Therefore, we can define maps h§ by restricting h¢, to domain A§ and codomain
B?. Tt follows from the definitions of (_)# and (_)® that for any order-sorted ¥-algebra A
one has A#® ~ A; indeed, in this case we can compute the colimits Aﬁ' as unions (Jscc As
and get an actual equality A#® = A.

By using the equations in J it is also easy to check that the bijections j,: B, — B2#
define an isomorphism ap: B ~ B*#. We now have to show that the isomorphism ap is
natural in B. This just means that when B varies over Algs# ; the ap’s are compatible
with the functor ()*#, i.e., for any h: B — B’ in Algyy ; the diagram

B L B’
ap o
o .

B X B'*#

commutes. This follows from the definition of h*# and is left as an exercise. (The identity
A#® = A that we got computing the colimits involved as unions is already natural in A,
since (_)#* is the identity functor on OSAlgy.) O

4.2 Semantic Consequences of the Reduction Theorem

The Reduction Theorem is also useful for lifting other MSA results to OSA. Because an
equivalence of categories preserves initial objects (for example, by the general result that an
equivalence of categories preserves colimits, e.g., [50], Theorem V.5.1), the Reduction The-
orem implies that (_)# sends any initial order-sorted ¥-algebra to an initial (£#, J)-algebra
whenever ¥ is coherent, and so we get the isomorphism T ~ Ts# ;. Similarly, when ¥ is
a (not necessarily regular) locally filtered signature, ()® sends the initial (#, J)-algebra
Ts# ; to an initial order-sorted algebra, because (_)* is an equivalence of categories. Thus
initial order-sorted algebras exist even when ¥ is not regular (of course, there is an isomor-
phism Té#, ; = Tx. when ¥ is coherent). By the equivalence of categories, the existence of
an initial order-sorted algebra now follows directly from the well-known existence of many-
sorted initial algebras for conditional equations. However, the explicit construction of Ts;
given in Theorem 2.12 when ¥ is regular is fairly simple, helps to develop intuitions about
OSA, and does not require local filtering.

Corollary 4.3 (Initiality IT) Given a locally filtered order-sorted signature ¥ with sorts .S,
and an S-sorted set X disjoint from ¥, then T3, ; is an initial order-sorted X-algebra and
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(Ts# 7(X))*® is a free order-sorted -algebra on X; if ¥ is coherent then TE# is an initial
($#, J)-algebra and Tx(X)# is a free (X#, J)-algebra on X. O

This corollary could also be obtained by noticing that there is a (right adjoint) forgetful
functor U: Algs# ; — Set® (where Set® is the category of S-sorted sets) with U(B) =
{Bs | s € S} and using the facts that an equivalence of categories is an adjoint and that
the composition of adjoints is an adjoint (see [50], Theorems IV.8.1 and IV.4.1).

This corollary is useful in connection with parsing order sorted terms, through the
unique L#-homomorphism from the initial ©#-algebra, h: Tss — Tz# or, if we want terms
with variables, hx: Ts#(X) — Ts(X)#. The set P(t) = {t' € Tx#(X) | hx(t') = t} for
t € Tg(X) is the set of all disambiguated parses of ¢ as a $#-term; let P(t), denote
the set of parses of t of sort s, i.e., P(t) N Tx#(X)s. Proposition 2.10 showed that for %
coherent, there is a least sort s with ¢t € 75, 5 and therefore with P(t); nonempty; this sort
s was denoted LS(t). For I' a set of order-sorted equations, conditional or not, let P(T")
denote the set of all possible parses for each equation in I'.

In fact, the construction of Proposition 2.10 can be adapted as follows to find the least
sort parse LP(t) of t: First, for = a variable symbol, let LP(z) = z; next, for ¢t = o(t1...tn)
with n > 0 and with si = LS(¢7), let (w,s) be the least pair such that sl...sn < w and
0 € Yy,s (which exists because X is regular); then LP(t) = 0y, s(LP(t1),..., LP(tn)).

The results of this section are also useful in reducing the satisfaction of equations in
OSA to the satisfaction of equations in MSA. The main theorem is:

Theorem 4.4 (Satisfaction) For ¥ a coherent order-sorted signature:

(1) A X-algebra A satisfies a conditional equation (VX) t = ¢ if C iff the X#-algebra
A# satisfies any conditional equation (say of sort s) (VX) t; = ¢, if C; such that
hX,s(tl) = t,hx,s(tll) = t’, and hx(cl) = C

(2) Conversely, a (X%, .J)-algebra B satisfies a conditional equation (VX) t; = ¢} if C; (of
sort s) iff the order-sorted algebra B*® satisfies the conditional equation (VX) hx (t1) =
hx (1) if hx(Ch).

Proof: For any assignment a: X — A, let a™: Txp(x) — A# and a*: Ts(X) — A denote
the unique homomorphisms induced by a. By definition of satisfaction, to prove (1) it is
enough to show that for any ¢ € 7x(X) and t; € T4 (X)s such that hx s(t1) = ¢, one has
af (t1) = a*(t). This follows from the initiality of Ts#(x) by noting that the diagram

h
Ty (x)————Te(X)#
at o

X My

gives a*# (hx (1)) = a*#(z) = a(z) = a™(z), and thus a*# o hx equals the homomorphism
a®: Typxy) — A#. Next, we reduce the proof of (2) to the proof just given for (1) by
noticing that since B is isomorphic to B*#, it satisfies exactly the same equations as
B*# and (using (1)) B*# satisfies an equation (VX) t; = ¢, iff B® satisfies the equation
(VX) hX,s(tl) = hX,s(tll). O

This theorem shows that for I a set of conditional order-sorted X-equations and for
P(T) the set of all possible parses of the equations in T' as conditional X#-equations, the
functor (_)# restricts as expected:
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Corollary 4.5 For ¥ a coherent signature and I" a set of conditional ¥-equations, there is
an equivalence of categories

(_)#: OSAIgEI — Algz#,JuP(I‘)'

As before, this means that initial algebras, and more generally free algebras, are pre-
served by the equivalence of categories. Therefore we can prove in a different way, without
appeal to order-sorted deduction, the existence of initial and free order-sorted algebras.

Corollary 4.6 (Initiality III) Given a coherent signature ¥, the class OSAlgs r of X-
algebras satisfying a set I' of conditional equations has an initial algebra, and for any
variable set X, also a free (X,I')-algebra over X. In particular, (Ts# jup(r))® is an initial
(2,T)-algebra, and (T4 jupry(X))*® is a free (3, T)-algebra on X. O

Two important consequences of the Satisfaction Theorem are order-sorted versions of
the McKinsey-Malcev Quasivariety and the Birkhoff Variety Theorems. Since the case
when the set of sorts S is infinite requires some additional developments (for which see
[25]), we treat the case of a finite set of sorts. The MSA McKinsey-Malcev Theorem
states that a class of many-sorted algebras is definable by conditional equations iff it is
closed under products, subalgebras, and filtered colimits (for example, see [38] 63.3, where
the statement is one-sorted; note that our formulation considers limits and colimits up
to isomorphism, so we do not need closure under isomorphisms). The Birkhoff Variety
Theorem [1] characterizes classes of algebras definable by unconditional equations as those
classes closed under products, subalgebras, and homomorphic images (Birkhoff’s original
formulation was one-sorted; see [42] for the first many-sorted formulation, and [25] for
a corrected statement regarding quantification of variables and a discussion of infinitely
many sorts). Our aim is to use the equivalence of categories to lift these two theorems
from MSA to OSA. However, first we need to relativize the MSA McKinsey-Malcev and
Birkhoff Theorems to a subclass defined by conditional equations, due to the presence of
the conditional ©#-equations J.

First some notation: For C a class of order-sorted ¥-algebras, let P(C), S(C), H(C),
F(C) denote the closure of C under products, subalgebras, homomorphic images, and filtered
colimits, respectively. Similarly, for C; a class of many-sorted X#-algebras, let P'(Cy),
S'(C1), H'(C1), F'(C1) denote the corresponding many-sorted closures.

Lemma 4.7 Given a many-sorted signature {2 with a finite sort set, a set for I'; of con-
ditional Q-equations, and a class Cy of algebras contained in Algg, then the following
hold:

(1) Cy is of the form Algg, -, r, for some set I' of conditional equations iff it is closed in
Algg, 1, under products, subalgebras and filtered colimits.

2) C; is of the form Alg for some set I'y of unconditional equations iff it is closed
Q.U
in Algg p, under products, subalgebras and homomorphic images.

Proof: The first statement follows from the well known (and easily shown) fact that
classes of equations and classes of algebras form a Galois connection, and the closures
under products, subalgebras, and filtered colimits of any class in Alggr, and in Algg
coincide precisely by virtue of the McKinsey-Malcev Theorem.

The second statement follows by remarking that Algg p, is closed under products and
subalgebras, so that those two closures coincide in Algq p, and in Algg. The closure
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under homomorphic images of C; in Alggp, is just the intersection H'(C1) N Alggq .
Since C; is assumed closed under products and subalgebras, and since the closure under
homomorphic images of a class closed under products and subalgebras is also so closed, the
Birkhoff Variety Theorem implies that H'(C;) is of the form Algq , for some set Ty of
unconditional equations, and so we have C1 = Algg r, N Alggr, = Algg r,ur, as desired.
The converse is now easy. O

Corollary 4.8 (McKinsey-Malcev Quasivariety and Birkhoff Variety) For (S, <,X) a co-
herent order-sorted signature with S finite:

e A class of order-sorted X-algebras is definable by some set of conditional equations I’
(i.e., is of the form OSAlgy, - for some set I' of conditional equations) iff it is closed
under products'®, subalgebras, and filtered colimits.

e A class of order-sorted X-algebras is definable by some set of (unconditional) equations
[ (i.e., is of the form OSAlgy, - for some I of unconditional equations) iff it is closed
under products, subalgebras, and homomorphic images.

Proof: Notice that by the Satisfaction Theorem, any class of order-sorted algebras of the
form OSAlgy - for I' a set of conditional equations, can be written as (Algs# jup(r))®-
Similarly, for I'; a set of conditional ¥#-equations, one has (Algs# jur,)* = OSAlgs ., (1))
(where X is a set of variables that contains all those declared in the equations of I'y).
This means that a class of order-sorted Y-algebras C is definable by conditional equations
(respectively, unconditional equations) iff it is of the form (Algy# ;r,)® for I'1 some set
of conditional (respectively, unconditional) $#-equations. Note also that if C; is a class of
many-sorted algebras contained in Algy# ; and closed under isomorphisms, then (C1)*® is
also closed under isomorphisms; in particular, equationally definable classes of order-sorted
Y-algebras are closed under isomorphisms (this was the motivation for defining coherent
signatures). Now consider the following identities that hold for C; a class of many-sorted
algebras contained in Algy4 ; and closed under isomorphisms:

(1) P((C1)°) = (P'(C1))"
(2) S((C1)*) = (5'(C1))*
(3) H((C1)*) = (H'(C1))°
(4) F((C1)°) = (F'(C1))"

Since equivalences of categories preserve all limits and colimits, (1) and (4) are immediate.
(2) and (3) follow from C; (and thus (C1)®) being closed under isomorphisms, by remark-
ing that the functors ())# and (_)® both preserve injections and surjections. The OSA
McKinsey-Malcev Theorem now follows from Lemma 4.7 and (1), (2), (4), while the OSA
Birkhoff Theorem follows from Lemma 4.7 and (1), (2), (3). D

5 Variations on the Theme

Many different ways to define order-sorted algebra have appeared in the literature. However,
most are less general than our approach; for example, they may fail to admit many-sorted
algebra as a special case, or to provide a semantic account of overloading.

®Le., products [], A; of families {A; | i € I} over arbitrary index sets I.
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5.1 Preregularity

Let us begin with a variation of our own invention, a weakening of regularity that is needed
for the discussions which follow:

Definition 5.1 An order-sorted signature ¥ is preregular iff given w0 < wl in S* and
given o in ¥, 51 there is a least sort s € S such that w0 < w and o € ¥, ; for some w € S*;
we call s the least sort of o with arguments (arity) over w0, and denote it LS(o,w0).
Notice that X(X) is preregular if ¥ is. O

Proposition 5.2 The following are equivalent'* for an order-sorted signature X:
1. X is preregular.

2. Each t € Ty, has a least s € S such that ¢t € Ty ; called the least sort of ¢t and denoted
LS(t).

3. Given S’ C S and a variable set X that is disjoint from 3, then N,cq Tx(X)s =
Usi<s To(X) s (where s’ < §' means that s’ < s" for all s € §).

Proof:

(1)=(2) may be proved essentially the same way as Proposition 2.10.

(2)=(3): Since preregularity is preserved by adding constants, we need only consider
ground terms, and since the opposite containment is obvious, it is enough to show that
Nses' Ts,s € Ug<s T,sr. For any t € Nyeq Ts,s we have LS(t)<S'; thus, t € Uy<g Tx,s
as desired. - -

(3)=(1): Suppose that 3 is not preregular. Then there are w0 and o such that o is in
Ywi,s1 with w0 < wl for some wl € §* but LS(o, w0) does not exist. Let w0 = sl...sn,
and let X consist of the variables z1, ..., zn of sorts s1, ..., sn. Then the set S’ of all possible
sorts for the term o(z1,...,zn) is such that any s’ with 0 € ¥,y ¢ and w0 < w' is in
S’ and any s” in S’ is of the form s” > s’ for one such s; thus, the set S’ cannot have
a least element. Since o(z1,...,zn) belongs to N,cg Tx(X)s and by hypothesis we have
Nses To(X)s = Ug<g To(X)s we can conclude that S’ has a least element, which is a
contradiction. O

The least parse LP(t) of a term ¢ discussed in Section 4.2 also generalizes to preregular
signatures.

5.2 Related Work

The approach to order-sorted algebra given in this paper generalizes the one given in [23],
and differs from others in the literature [16, 67, 71, 72]. This section gives a precise com-
parison of our approach with these others, and concludes that the approaches are close
enough that they can simulate each other; on the other hand, it also concludes that there
are substantial advantages, both in generality and in the pragmatics of language design,
that support our choice. Our main goals in choosing definitions have been:

e To be as general and simple as reasonably possible.
e To insure that MSA is a special case of OSA.

e To give a semantic account of overloading.

14We first proved this result assuming that the poset S of sorts satisfied the descending chain condition;
we thank Gert Smolka for pointing out that this restriction is unnecessary.
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All authors seem to agree on the notion of order-sorted signature (except perhaps for
an inessential restriction in [16]). However, significant differences arise in the notions of
algebra and homomorphism. From more to less general we have the following:

1. OSAlgy is the notion given in this paper, which in particular involves the following
monotonicity condition in the definition of order-sorted algebra:

(2) 0 € Tuis1 N Byz,s2 and wl < w2 imply that A¥L%1(a) = A¥22(a) for all
a € Ay

2. OSAlg}; replaces our condition (2) by the condition

(2) if 0 € By1,51 N Tuwz,s2 and if there is a w0 < wl, w2, then A¥H5!(a) = AY>%(a)
for all a € Ayyp.

The definition of homomorphism is exactly the same in these two cases.

3. OSAlg¥ is the category proposed by [16, 67, 71, 72]. It replaces condition (2) by
(2") if 0 € Sy1,51 N Swa2,s2 and if a € A% N A¥2) then A1 (a) = A¥>52(a).
The notion of homomorphism f: A — B adds to ours the requirement
(H) if a € A;N Ay then fi(a) = fo(a).
The differences in generality are reflected by inclusions of categories,
OSAlgl C OSAlg). C OSAlgy,

where the inclusion OSAlgs, C OSAlgy is full, whereas the inclusion OSAlgy. C OSAlgs
is not full in general (i.e., there are homomorphisms in our sense that are not homomor-
phisms in OSAlg?$.). The discussion below will show that:

e If 3 is regular then OSAlg}, = OSAlgy.
e If ¥ is preregular then 7y is initial in OSAlg}..

e Any preregular signature 3 can be extended to a regular signature Y’ such that
OSAlgy, = OSAlgs,.

Thus the difference between OSAlg), and OSAlgy. is not very substantial and, since reg-
ularity is nicer than preregularity, the main parts of this paper stick to regularity.

Condition (2) may seem surprisingly general, because it admits some possibly unex-
pected behavior. For example, consider (S,3) where § = {s1,s2,s3} with sl < s2,s3,
where a € X 51 and 0 € X940 N X43,53. Then there are order-sorted ¥-algebras A such
that

A252(a) # A5 a).
For example, one such algebra has A5 = {a}, As2 = {a,b}, As3 = {a,c} with

Af,Z’SQ(a) — AiQ’SQ(b) =b
and

Ag3,s3(al) — Ag3,s3(b) =c.
Condition (2') excludes this kind of behavior, but condition (2) is technically easier to work
with, as well as more general; moreover, it is needed for one of the main results of this
paper, Theorem 4.2.
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Although preregularity may seem very natural, it fails to ensure the equivalence of
conditions (2) and (2') in the definition of order-sorted algebra. For example, consider a
signature ¥ with sorts S = {s0, s1, s2, s3}, subsort relations s0 < sl1,s2, and operations
o: s1 = 83 and o: s2 — s3. Then X is preregular, but the order-sorted algebra N with
N;; = N, the natural numbers, for ¢ = 0,1,2,3, and with N,: Ny — N3 the identity
function and N,: Ny — N,3 the constant function mapping all the natural numbers to
0, fails to satisfy condition (2'). One can rule out such bizarre models by accepting only
algebras in the subcategory OSAlg}. of OSAlgy, containing algebras that satisfy condition
(2'). Since Lemma 5.4 below shows that any preregular signature can be extended to a
regular signature and, since regular signatures ensure condition (2'), this paper emphasizes
regularity and the simpler, more general condition (2). Moreover, we have

Fact 5.3 If ¥ is a regular order-sorted signature, then a Y-algebra A satisfies condition (2)
iff it satisfies condition (2).

Proof: Clearly (2) implies (2). Conversely, assume that A satisfies (2), let o € 1,51 N
Yw2,s2 and let w0 < wl,w2. Then there is a least (w,s) with ¢ € ¥, s and w0 < w. In
particular, (w,s) < (wl,s1),(w2,s2). Therefore, A¥1*! and A¥2%5? are equal to AY** on
Ay. Thus, if a € Ay then also a € A, and AV (a) = A¥>52(q). O

Lemma 5.4 Given a preregular signature X, there is a regular signature X’ on the same
sort poset such that ¥ C ¥’ and there is an isomorphism of categories OSAlgt, = OSAlgs,.

Proof: Let X' be the signature containing ¥ (with the same sort poset S) and for each
w € S* such that o € ¥,/ ¢ for some w' > w a new operation o: w — LS(o,w). Since X
satisfies the monotonicity condition, and w < w' implies LS(o,w) < LS(o,w') whenever
this is defined, the signature ¥’ also satisfies the monotonicity condition. Also, for each
w € S* such that o € ¥, ¢ for some w’ > w the least rank for o with arity greater than
or equal to w is precisely (w, LS(c,w)). Therefore X' is regular.

The functor OSAlgy, — OSAlg}, of the claimed isomorphism just forgets about the
new operations introduced in ¥/, noting that condition (2') is satisfied because ¥’ is regular.
Showing that there is an inverse functor is tantamount to showing that each A in OSAlg}
can be extended in a unique way to an algebra A’ in OS Algy, identical with A for operations
in ¥ in such a way that if f: A — B is in OSAlg}, then f: A’ — B’ is in OSAlgsy,. Since
for each new operation o: w — LS(o,w) in X' there is an operation o: w' — LS(o,w)
in ¥ with w < w', the extension A’, if it exists, must clearly be unique and then X-
homomorphisms must preserve the new operations since these are just restrictions of already
existing operations. But existence of A’ is guaranteed by restriction of the already existing
operations, precisely by condition (2'). O

Corollary 5.5 For a preregular signature 3. the algebra 7y is initial in the full subcategory
OSAIlgl. of OSAlgy, defined by those algebras satisfying condition (2').

Proof: This can be proved directly, by minor modifications of the proof of Theorem 2.12,
but it follows more abstractly from the isomorphism of categories OSAlgs = OSAlgsy,
that maps 7 to Tsy, since isomorphisms of categories preserve all limits and colimits and
in particular preserve initial objects. O

A nice property of term algebras is that they automatically satisfy condition (2”); more-
over, in the smaller category OSAlgY. the term algebra Ty is initial for any order-sorted
signature Y. However, there are good pragmatic reasons to require regularity in any case.
Poigné [67] perceived regularity does not actually disappear in the category OSAlgy; it
is hidden in condition (2”) in a sense to be made precise below. However, the category
OSAlg¥, has some serious drawbacks, including the following:
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e Condition (2") rules out the convenient flexibility of ad hoc polymorphism. For ex-
ample, one cannot have an algebra in which 0 and 1 are both Booleans and naturals,
and in which + is both addition of naturals and exclusive or of Booleans.

e Conditions (2"”) and (H) radically exclude many-sorted algebra as a particular case of
order-sorted algebra. In a many-sorted algebra, two different sorts may have elements
in common, but homomorphisms may map the same element to different images
depending on the sort.

This lack of compatability between the many-sorted and order-sorted approaches associated
with OSAlgY. is unfortunate, since order-sorted logic is in principle a refinement of many-
sorted logic, and since the previous literature on abstract data types has, almost entirely,
been developed in the many-sorted framework.

It is also unfortunate that overloading is so severely limited in this approach, because ad
hoc polymorphism is such a pervasive and important part of ordinary mathematical notation
that it would be a great pity, either to entirely rule it out in the design of programming
languages, or to relegate it to the realm of “mere syntax,” without the backing of a proper
semantic theory, so that one cannot know in advance whether or not some proposed feature
might work. Discussions about overloading are difficult, and sometimes even acrimonious,
for languages as diverse as Ada [13] and Haskell [44], precisely because of the lack of an
underlying semantic basis for these discussions.

We also wish to mention that requiring signatures to be coherent allows a very simple
and flexible treatment of equality, since we can always assume that ¢ and ¢’ have the same
sort whenever they appear in an equation!® ¢+ = t' by going to a common supersort. By
contrast, Smolka [71] introduces special equality predicates of the form =, ¢ and requires
closure under certain properties of such predicates (so-called “balanced” signatures) in order
to obtain a completeness theorem. This seems somewhat unnatural.

A one-sorted “universe” view of order-sorted algebra lurks within conditions (2”) and
(H). Defining A = |J,cg As to be the “universe”, then condition (2”) is equivalent to the
existence for each operation o with n arguments of a partial operation A,: A™ — A whose
domain of definition is the union of the A¥ such that o: w — s in X satisfies appropriate
sort conditions for the results. Similarly, condition (H) is equivalent to the existence of
a set-theoretic function between universes that preserves sorts and operations. Therefore,
one way to reconcile our view with that of [16, 67, 71] is to make the universe explicit.
This has also the advantage of showing how an order-sorted “universe” view can easily be
embedded into an unsorted view where one gets for free (in both the categorical and the
pragmatic senses!) informative error messages for ill typed expressions that take the form of
terms whose only sort is the entire universe. The idea is very simple. Take any order-sorted
signature Y and extend it to asignature 3X* by adding to it a new sort u such that s < u
for any old sort s, and also adding operations o: u™ — u for all o: sl...sn — s in ¥ (but
note that ¥* need not be regular when ¥ is). We then have:

Theorem 5.6

e OSAlgY. = OSAlgy. and in particular, Tsx. is the initial algebra for all three
categories.

e The forgetful functor (_|x): OSAlgy. — OSAlgy that forgets about the universe
sort lands inside OSAlg?. and sends one term algebra to the other, i.e., Tsu|s = Ts.

15Recall that we require ¢t and ' to lie in the same connected component, since we do not consider
equations across different components meaningful. However, even this restriction could be dropped by
adding a universal sort.
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e There is a functor (_*): OSAlgy, — OSAlgy. left adjoint to (_|x) with a natural
(unit) identity A = A"|x and with a very simple description, namely A%(z1,...,zn) =
if i € Ay and 0 € Eg1._4n,s then A(z1,...,2n) else the term o(z1, ...,zn) of sort .

There is another way of relating the two different approaches to order-sorted algebra
that has the advantage of making explicit in what sense the regularity assumption is hidden
in conditions (2”) and (H). This has also been noticed by Poigné [67], although his statement
of the facts seems to be inaccurate because he claims a full subcategory inclusion rather than
an isomorphism of categories. The idea is to complete the sort poset S by finite intersections
into a poset I(S): The elements of I(S) can be represented as finite expressions s1&...&sn
for s1,...,sn € S and with sl&...&sn < s'1&...&s'm iff for each s’j there is an si such
that si < s'j; and of course, two representations s1&...&sn and s'1&...&s'm are equal iff
s1&...&sn < §'1&...&s'm and s1&...&sn > s'1&...&s'm. For a general justification of why
this construction of I(S) works and makes the inclusion map S — I(S) universal, see for
example Corollary 3.2 (dualized) of [53].

We can extend an arbitrary order-sorted signature ¥ on S to a regular signature ()
on I(S) if ¥ satisfies the following reasonable finiteness condition'®: for any o in ¥ having
n arguments, and for any word w0 of length n in I(S)*, the set {w € §* | 0 € 3, ; and
w0 < w} has a finite set of minimal elements, say wl, ..., wn, with o: wi — si. When such
a set is nonempty, we introduce in I(X) an operation o: w0 — s1&...&sn. This makes I(X)
regular by construction. Now notice that every algebra A in OSAlg!. can be extended to
an I(X)-algebra I(A) by defining I(A)s1&.. &sn = Asi N ... N Agp, with operations extended
to intersection sorts in the natural way, i.e., suppose that we have o: w0 — s1&...&sn as
above, obtained from o: wi — si. Then a € A™? implies that ¢ € A™* and by condition
(2"), As(a) is uniquely defined and belongs to A, for each i = 1,...,n and therefore to
Ag1g.. &sn- Since the homomorphisms h: A — B in OSAlg¥, are functions on the universes
that preserve the sorts and the operations, they also preserve intersection of sorts. In
other words, there is a functor I: OSAlgy, — OSAlg r(s) that is faithful and injective on
objects and preserves initial algebras; I is also full, since many-sorted functions that agree
on intersections glue together to give a function on the universes. Therefore, we can regard
OSAIlgy. as a full subcategory of OSAlg; ). However, the category OSAlgy(s) can have
other objects B such that there is a proper inclusion Byi1g,. . gsn C Bs1N...N By, rather than
an equality. Actually, OSAlg¥. can be nicely axiomatized by sort constraints of the form

as x : sl &...%& sn if x : s1 and ...and x : sn .

Further details on sort constraints must wait for Part II of this paper; however, see [23] for
a very brief introduction. In summary, we have

Theorem 5.7 The functor I: OSAlgy — OSAlgy(y,) is full, faithful and injective on
objects, and therefore makes OSAlgy. isomorphic to a full subcategory of OSAlgy).
Moreover, I preserves initial algebras, i.e., I(Tx) = Tyx)- O

Pragmatically, it is very helpful to have a least sort for each term ¢ in an order-sorted
term algebra. This makes the task of parsing much easier and also supports good pro-
gramming and specification practice. Our experience with many examples indicates that
this very natural property is generally satisfied in practice, and moreover, nonsatisfaction
is often connected with conceptual errors. Of course, it is also easy to check this condition

18We could actually do it without assuming this condition, but then infinite intersections of sorts would
need to be added.
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syntactically. The above subcategory inclusion tells us that in a sense, regularity is always
present, but we prefer to make it explicit, since this gives a much simpler approach to the
syntactic aspects of order-sorted algebra that any programming language based on these
ideas must necessarily address. Moreover, as already mentioned, our choice is the only one
that makes the logic a natural extension of many-sorted logic. For all these reasons, as well
as for its being simpler and more general, we prefer our approach to the alternatives in
[16, 67, 71, 72]. Another reason that has been implicit in our choice, and therefore should
also be mentioned, is that our approach is intimately connected with the Cartesian algebraic
theories of categorical logic and (with the addition of sort constraints) it actually gives a
very convenient way to specify Cartesian theories that avoids many of their shortcomings;
this will also be explained in Part II of this paper.

5.2.1 Summary

We may summarize the above discussion with the following points:

e There is basic agreement among all authors about the concept of order-sorted signa-
ture; also, the approaches in [16, 67, 71, 72] are all equivalent (except perhaps for an
inessential restriction in [16]).

e Qur approach is more general in the sense that, for each signature, the algebras and
homomorphism of the alternative approaches form a subcategory of our algebras and
homomorphisms.

e Only our approach provides a natural extension of many-sorted algebra as the par-
ticular case where the sort poset has the discrete order.

e Only our approach permits the convenient flexibility of ad hoc polymorphism.

e All approaches can be reconciled, yielding identical categories, by adding a universe
sort and extending the operation symbols at the universe level.

e The approach of [16, 67, 71, 72] has the advantage that term algebras are initial in
general, whereas we must require that each term have a least sort; however, initial
algebras exist in our approach even without this requirement, as shown by Initiality
Theorem IT (Theorem 4.3 of Section 4.2). The requirement that a least sort exist
for each term is implicit in the other approaches in a sense made explicit by a full
subcategory embedding. We believe that the least sort requirement is very natural,
and that it supports simpler implementations and better programming practice.

5.3 Further Literature

There is by now such a vast amount of related work that we can hardly do more than cite
examples almost at random, including the following:

1. Implementations of inheritance in Simula [12] as further developed in Smalltalk [37]
and other object-oriented languages.

2. Overloading and subtypes in Ada [13].

3. The theory of (higher order) polymorphism as developed in [58], [68], [8] and [55],
among many others.

4. There has been recent work on adding subtypes to higher order calculi [7, 2].
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5. Work on “classified algebras” [78] and on “multi-target operation” algebra [39].

6. Work on the semantics of natural and artificial languages, including: [45], which shows
how Montague grammar [59] (a formal system for natural language semantics) can
be treated with a version of initial algebra semantics with subsorts; [33], which uses
error algebras to define programming languages (and thus compilers); and [41], which
uses partial algebras to give a semantics for subscripted variables.

7. There is some explicit theory of multiple inheritance in the context of object-oriented
programming, including [6] and [76], and we have ourselves applied order-sorted al-
gebra to this problem [30].

8. There is also some work giving operational semantics for subsorts by rewriting, e.g.,
[11] and [80]; [23] and [48] give details of two different operational semantics that
implement precisely the framework given in this paper.

9. Peter Mosses has generalized order-sorted algebra to “unified algebra” [61], which
treats elements and subsorts in a uniform way, and thus can handle non-determinism
in an algebraic setting. Mosses developed this formalism to support his “action se-
mantics,” an algebraic approach to denotational semantics [60].

There are many interesting relationships among these papers: for example, [16] follows [18]
in using signatures ¥ that are “fully overloaded” in the sense that if o: w — s isin X
and w' < w and s < &, then o: w' — s’ is in . Our weaker notion of regular signature
is intended to capture ad hoc polymorphism. Reynolds has subsequently abandoned the
algebraic approach of [69], since (he says) it fails to handle the higher-order case. However,
higher-order abstract data types have been treated by [64], even with a notion of subsort;
see [66] for some corrections to [64]. In fact, the approach of [69] can be seen as arising
from taking the so-called tensor product of one algebraic theory with another that consists
entirely of subsort inclusions.

The extremes to which one might be driven by the difficulties of partial algebras are
illustrated in [41], which models a state change by a change of algebra, and thus models
a computation by a sequence of algebras. The “classified algebra” of [78] seems to be a
version of OSA, and the “multi-target operation” approach of [39] combines aspects of the
partial algebra and the explicit error sort approaches.

There is also now much interesting work on unification for order-sorted algebra, includ-
ing [11] and [80], who discuss algorithms for unification, and [79], who argues for the utility
of subsorts in connection with resolution and paramodulation. [18] gives a systematic treat-
ment of order sorted unification that is consistent with the present paper, and includes a
linear time unification algorithm for signatures satisfying some simple conditions.

Kamin and Archer [47] argue that total algebras are unsuitable for treating errors, for
reasons like the following;:

e the error messages from various abstractions that use (say) the integers, Int, cannot
be kept separate;

e you have to specify all the error behavior of a module in advance of implementing it;

e and thus, to show correctness of an implementation, all this behavior must also be
verified.

None of these objections is valid against the full power of OSA. The first objection is met
in an elegant and simple manner by permitting each different abstraction that uses Int to
have its own supersort of Int containing its own error behavior; these supersorts need have
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no intersection outside of Int. The force of the second and third objections arise from the
fact that the error behavior of an abstraction is often determined by the context in which
you want to use it. OSA again saves the day, although some concepts not discussed in this
paper are needed: the notion of behavioral equivalence of abstract machines [24, 57] can
be slightly generalized to consider only certain designated subsorts, e.g., those that exclude
the error messages; behavior outside these subsorts is not specified, and thus need not be
verified. The method is flexible enough to permit specifying error messages when required
by a problem; for example, in specifying a compiler, one might well want to require that
certain specific error messages are produced for certain kinds of erroneous input. Kamin
and Archer [47] also argue that error features like the finite bound of a stack or array
should not be specified, but should be determined by the implementation; but we think
this is wrong, since one often wants to specify that at least a certain amount of storage must
be available. The “implementation” with no storage capacity at all is not useful. These
issues are discussed in more detail in [57]. It is perhaps worth emphasizing that OSA can
be used in connection with both abstract machines (which have internal states) and data
constraints, which together give much more power for applications than we have been able
to illustrate in the present paper.

A A Number Hierarchy

This appendix illustrates the expressiveness of order-sorted algebra by constructing the
number hierarchy from scratch, all the way from the naturals to the quaternions with
rational coefficients. Figure 3 displays the highly nontrivial sort structure of this example.

The actual OBJ3 code consists of modules NAT, INT, RAT, CPX-RAT and QUAT-RAT, plus
some test cases that use a module TEST defining decimal digits as shorthand for the Peano
notation with zero and successor given in the code. Since the Peano notation is clumsy and
inefficient, OBJ3 provides built in modules NAT, INT and RAT that satisfy the specifications
given here, but with efficient implementations of the usual decimal notation. However, the
code below does not make any use of these built in data types.

It is worth noting that standard many-sorted algebra cannot satisfactory specify an
example like this. Since RAT, CPX-RAT and QUAT-RAT are fields, one sinks into the murky
water of division by zero, and the resulting code is inevitably embarrassingly complex, or
even wrong. By contrast, providing subsorts for nonzero elements makes division by zero
a nonproblem. Moreover, subsort polymorphism for the arithmetic operators allows using
the same function symbol for operations like addition throughout the hierarchy, as is usual
in mathematical notation.

---> this file is /users/goguen/obj/num/quat.obj
—---> number hierarchy up to the quarternions

obj NAT is sorts Nat NzNat Zero .
subsorts Zero NzNat < Nat .
op 0 : -> Zero .
op s_ : Nat -> NzNat .
op p_ : NzNat -> Nat
op _+_ : Nat Nat -> Nat [assoc comm]
op _*x_ : Nat Nat -> Nat .
op _*_ : NzNat NzNat -> NzNat
op _>_ : Nat Nat -> Bool .

op d : Nat Nat -> Nat [comm]

op quot : Nat NzNat -> Nat
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Figure 3: Sort Structure for the Number Hierarchy
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op gcd : NzNat NzNat -> NzNat [comm]
vars N M : Nat
vars N’ M’ : NzNat .

eqps N=N.
eq N+ 0=0N.
eq (s M+(s M) =5 s(NW + M)
eq N *x 0 =0 .
eq O *x N =20 .

eq (s N)*(s M) = s(N +(M +(N * M)))

eq 0 > M = false .

eq N’ > 0 = true .

eqsN>sM=N>M.

eq d(O,N) = N .

eq d(s N, s M) = d(N,M)

eq quot(N,M’) = if ((N > M’)or(N == M’)) then s quot(d(N,M’),M’)
else 0 fi .

eq gcd(N’,M’) = if N’ == M’ then N’ else (if N’ > M’ then
ged(d(N’,M’),M’) else gcd(N’,d(N’,M’))fi)fi .

endo

obj INT is sorts Int NzInt .
protecting NAT .
subsort Nat < Int .
subsorts NzNat < NzInt < Int .

op -_ : Int -> Int .

op —_— : NzInt -> NzInt .

op _+_ : Int Int -> Int [assoc comm]
op _*_ : Int Int -> Int .

op _*_ : NzInt NzInt -> NzInt

op quot : Int NzInt -> Int
op gcd : NzInt NzInt -> NzNat [comm]
vars I J : Int

vars I’ J’ : NzInt .

vars N’ M’ : NzNat .

eq--I=19.

eq - 0=0.

eqI +0=1.

eq M’ +(- N’) = if N’ == M’ then 0O else

(if N> > M’ then - d(N’,M’) else d(N’,M’)fi)fi .
eq (- D+(-J) = -(I +J1)
eqI *x 0=0.
eq 0 x I =0.
eq I *x(-J) =-(T *J)
eq (- D*x I =-(I *1J)
eq quot(0,I’) =0 .
eq quot(- I’,J’) = - quot(I’,J?)
eq quot(I’,- J’) = - quot(I’,J’)
eq ged(- I’,J°) = gecd(I’,J?%)

endo
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obj RAT is sorts Rat NzRat .
protecting INT .
subsort Int < Rat .
subsorts NzInt < NzRat < Rat .
op _/_ : Rat NzRat -> Rat .
op _/_ : NzRat NzRat -> NzRat .

op —_ : Rat -> Rat .
op -_ : NzRat -> NzRat .
op _+_ : Rat Rat -> Rat [assoc comm]

op _*_ : Rat Rat -> Rat .
op _*_ : NzRat NzRat -> NzRat .
vars I’ J’ : NzInt .
vars R S : Rat .
vars R’ S’ : NzRat .
eqR /(R” / 8°) = (R * S?)/ R’
eq R/ R/ S R /(R % 8’)
ceq J’ / I’ = quot(J’,gcd(J’,I’))/ quot(I’,gcd(J’,I’))
if ged(J?,I°) =/=8s8 0 .
egR/ s 0=R.
eq 0/ R =0.
eqR /(-R) = (-R)/ R
eq -(R/R’) =(-R)/ R’
eq R +(§ / R’) = ((R *x R’)+ S)/ R’
eqR *(S /R’) = (R *S)/ R’
eq (8 /R)*R=(R *S)/R’
endo

obj CPX-RAT is sorts Cpx Imag NzImag NzCpx .
protecting RAT .
subsort Rat < Cpx .
subsort NzRat < NzCpx .
subsorts NzImag < NzCpx Imag < Cpx .
subsorts Zero < Imag .
op _i : Rat -> Imag .
op _i : NzRat -> NzImag .

op —_— : Cpx -> Cpx .

op —_ : NzCpx -> NzCpx .

op _+_ : Cpx Cpx —-> Cpx [assoc comm]

op _+_ : NzRat NzImag -> NzCpx [assoc comm]
op _*_ : Cpx Cpx -> Cpx .

op _*_ : NzCpx NzCpx -> NzCpx .

op _/_ : Cpx NzCpx -> Cpx .
op _# : Cpx -> Cpx .

op I_1"2 : Cpx -> Rat .

op |_|1"2 : NzCpx -> NzRat .
vars R S : Rat .

vars R’ R" S’ S" : NzRat .
var A B C : Cpx .

eq 0i=0.
eq C+0=C.
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eq (R 1)+(8 i) = (R + 8)1i .
eq -(R? +(8” 1)) = (- R?)+((- §”)1i) .
eq —(S8’ i) = (- 81 .
eq R (8 i) = (R * 8)i .
eq (8 i) R = (R * S)i .
eq (R 1)*(58 i) = -(R * 8) .
eq C *(A + B) = (C x A)+(C * B) .
eq (A + B)x C= (C* A)+(C * B) .
eqR# =R .
eq (R’ +(S? i))# = R’ +((- 8?)i) .
eq (S’ i) # = ((- 8°) 1) .
eq | C|"2=C* (C#) .
eq (S? 1)/ R" = (8’ / RM)i .
eq (R’ +(S? i))/ R" = (R’ / R")+((S’ / RMi) .
eq A /(R? i) = A *(((- s 0)/ R’)i) .
eq A /(R" +(R’ 1)) =
A *x(R" / | (R" +(R’> 1)) ["2)+(((- R?)/ |(R" +(R’ i))1"2)1)).

endo

obj QUAT-RAT is sorts Quat NzQuat J NzJ .
protecting CPX-RAT .
subsorts NzJ Zero < J < Quat .
subsorts NzCpx < NzQuat Cpx < Quat .
subsort NzJ < NzQuat .
op _j : Cpx -> J .
op _j : NzCpx -> NzJ .
op —_ : Quat -> Quat .

op _+_ : Quat Quat -> Quat [assoc comm] .
op _+_ : Cpx NzJ -> NzQuat [assoc comm] .
op _*_ : Quat Quat -> Quat .

op _*_ : NzQuat NzQuat —-> NzQuat .

op _/_ : Quat NzQuat -> Quat .

op _# : Quat -> Quat .

op |_1"2 : Quat -> Rat .

op |_1"2 : NzQuat -> NzRat .

var 0 P Q : Quat .
vars B C : Cpx .
vars C’ : NzCpx .

eq03j=0.
eq Q+0=Q.

eq -(C +(B j)) = (- OO+((- B)j ) .
eq (C j)+(B j) = (C +B)j .

eq C *(B j) = (C * B)j .

eq (B j)* C = (B *(C #))j .

eq (C j)*(B j) = -(C (B #)) .

eq Q *x(0 + P) = (Q * 0)+(Q * P) .
eq (0 +P)xQ =(0* Q+P *x Q) .
eq (P + Q# = (P #H)+Q #) .

eq (C j# =(-0Cj .

eq | Q 172 =Q *(Q #) .
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eq Q /(C” j) = Q *((s 0 /(= C*))j)
eq Q /(C +(C” j)) = Q *(((C #)/ [(C +(C* j))I|"2) +
(C(=C?)/ 1(C +(C” j))172)j))

endo

***x now some test cases, preceded by some helpful notation
obj TST is protecting QUAT-RAT .
ops 1 234567 89 : ->NzNat [memo]

eql=s80.
eq2=s81.
eq 3 =18 2.
eq 4 s 3 .
eq 5 s 4 .
eq 6 = s 5 .
eq 7 =86 .
eq 8 =87.
eq 9 =88 .
endo
reduce 3 + 2 .
reduce 3 * 2 .
reduce p p 3 .
reduce 4 > 8

reduce d(2,8) .

reduce quot(7,2)

reduce gcd(9,6)

reduce (- 4)+ 8 .

reduce (- 4)* 2 .

reduce 8 /(- 2)

reduce (1 / 3)+(4 / 6)

reduce | 1 +(2 i)[|"2 .

reduce | (1 +(3 i))+(1 +((- 2) i))|~2 .
reduce (3 +((3 )+((- 2) 1))) /((2 i)+ 2)
reduce (2 +((3 1)j)) *((5 i)+(7 j))
reduce (1 +((1 1)3j))/(2 j)
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