
versat: A Verified Modern SAT Solver

Duckki Oe, Aaron Stump, Corey Oliver, and Kevin Clancy

Computer Science
The University of Iowa

Abstract. This paper presents versat, a formally verified SAT solver incor-
porating the essential features of modern SAT solvers, including clause learn-
ing, watched literals, optimized conflict analysis, non-chronological backtrack-
ing, and decision heuristics. Unlike previous related work on SAT-solver verifi-
cation, our implementation uses efficient low-level data structures like mutable C
arrays for clauses and other solver state, and machine integers for literals. The im-
plementation and proofs are written in GURU, a verified-programming language.
We compare versat to a state-of-the-art SAT solver that produces certified “un-
sat” answers. We also show through an empirical evaluation that versat can
solve SAT problems on the modern scale.

1 Introduction

Several important recent works have applied powerful verification methods based on
full-fledged inductive theorem proving to verify important systems artifacts. CompCert
is an optimizing compiler for a subset of the C programming language, for which se-
mantics preservation has been proved in the COQ proof assistant (see [12], and many
other papers at the project web page, compcert.inria.fr). The seL4 microkernel
verification effort uses the Isabelle theorem prover to prove that the microkernel imple-
mentation in C and assembly refines a high-level non-deterministic model expressing
the desired system properties [10]. These impressive verification efforts show that the
trustworthiness of practical systems artifacts can be raised to the highest levels currently
known, using interactive theorem proving.

In a similar spirit, this paper presents versat, an efficient SAT solver for which we
have verified correctness of “unsat” answers. SAT and SMT solvers are critical com-
ponents of automatic verification tools like bounded model-checkers and k-induction
provers [9, 5], and are used for many other static analysis applications, such as symbolic
execution [11]. However, just as any complex piece of software, SAT solvers do have
bugs. Brummayer et al. reports crashes and incorrect answers from top-ranked solvers
at the SAT competition 2007 and 2009 [4]. This paper represents a first step towards the
development of verified high-performance analysis tools, by verifying correctness of
“unsat” answers from a modern performant SAT solver. Just as operating systems and
compilers are the foundations for computing systems generally, SAT and SMT solvers
are increasingly the foundation for analysis and automatic verification tools. So we see
SAT solvers as artifacts of fundamental interest, and hence natural targets for verifica-
tion.



Specification. We have proved statically that whenever versat reports a set of
input clauses unsatisfiable, then there exists a resolution proof of the empty clause
from those input clauses. This proof (as a data structure) is not constructed at run-time.
Rather, our verification confirms statically that it exists, for all formulas versat re-
ports unsatisfiable. As our verification is itself constructive, the resolution proof could in
principle be generated at run-time. But run-time proof-production imposes undesirable
time and memory overhead on SAT solving. So it is preferable to have a static guarantee
of soundness for the solver, at least for applications that do not need the actual proof
artifact, but only require a trustworthy result.

Main contribution. What makes our work distinctive is that it is, to the best of
our knowledge, the first to statically verify soundness of a SAT solver implemented
using efficient low-level data structures. These include 32-bit machine integers for lit-
erals and mutable C arrays for many solver data structures (e.g., clauses and look-up
tables), which are manipulated using machine arithmetic/bitwise operations, and low-
level pointer managements. In GURU, machine integers and their operations are pre-
cisely modeled as bit vectors and vector operations, including overflow situations. This
does increase the burden of proof, but is necessary for performance. We demonstrate
(Section 5) that versat can solve large benchmarks, including some on the order of
those used in the SAT Competition. While further work would be required to achieve
levels of performance closer to the current state of the art in SAT solving, versat is
already valuable as being the first high-performance SAT solver that can deliver trust-
worthy results without the overhead of proof production (and subsequent proof check-
ing). Furthermore, as versat already includes verified implementations of many of
the standard modern solver data structures including those for watched literals and effi-
cient conflict analysis, we hypothesize that our approach will scale to additional solver
optimizations.

Verification approach. This project also represents a major case study of a verifica-
tion approach which is gaining importance, particularly within the Programming Lan-
guages community. The versat code has been developed and verified in a so-called
dependently typed programming language called GURU [20]. The basic methodology of
dependently typed programming is to express rich specifications through types, and in-
clude proofs (when needed) only internally, inside program code. Such proofs establish
properties externally of functions used in expressing the specification. Such specifica-
tional functions are typically much smaller and more tractable than the programs they
specify, thus reducing the burden of proof. GURU implements this approach to program
verification, and also provides a static analysis for statically tracking memory. Thanks
to this analysis, GURU does not require a garbage collector for memory management at
runtime.

Paper outline. We begin with a brief summary of dependent types for verified pro-
gramming in GURU (Section 2). We then describe in more detail the specification we
have statically verified for versat (Section 3). Next, we describe the actual imple-
mentation, and how we verify that it meets our specification (Section 4). We present
empirical results supporting our claim that versat’s performance is within the realm
of modern SAT solving (Section 5). We next cover important related work (Section 6),



and then reflect a little on the experience of implementing an efficient verified SAT
solver (Section 7), before concluding (Section 8).

2 Verified Programming in Guru

By way of background for the sections on the specification and implementation of
versat below, we begin with a quick introduction to GURU. GURU is a functional
programming language with rich types, in which programs can be verified both exter-
nally (as in traditional theorem provers), and internally (cf [1]).1 For a standard example
of the difference, suppose we wish to prove that the result of appending two lists has
length equal to the sum of the input lengths.

External verification of this property may proceed like this. First, we define the type
of append function on lists. In GURU syntax, the typing for this append function is:

append : Fun(A:type)(l1 l2 : <list A>). <list A>

This says that append accepts a type A, and lists l1 and l2 holding elements of type
A, and produces another such list. To verify the desired property, we write a proof in
GURU’s proof syntax of the following formula:

Forall(A:type)(l1 l2:<list A>).
{ (length (append l1 l2)) = (plus (length l1) (length l2)) }

The equality listed expresses, in GURU’s semantics, that the term on the left-hand side
evaluates to the same value as the term on the right-hand side. So the formula states
that for all types A, for all lists l1 and l2 holding elements of that type, calling the
length function on the result of appending l1 and l2 gives the same result as adding
the lengths of l1 and l2. This is the external approach.

With internal verification, we first define an alternative indexed datatype for lists. A
type index is a program value occurring in the type, in this case the length of the list.
We define the type <vec A n> to be the type of lists storing elements of type A, and
having length n, where n is a Peano (i.e., unary) number:

Inductive vec : Fun(A:type)(n:nat).type :=
vecn : Fun(A:type).<vec A Z>

| vecc : Fun(A:type)(spec n:nat)(a:A)(l:<vec A n>).
<vec A (S n)>.

This states that vec is inductively defined with constructors vecn and vecc (for nil
and cons, respectively). The return type of vecc is <vec A (S n)>, where S is
the successor function. So the length of the list returned by the constructor vecc is one
greater than the length of the sublist l. Note that the argument n (of vecc) is labeled
“spec”, which means specificational. GURU will enforce that no run-time results will
depend on the value of this argument, thus enabling the compiler to erase all values for
that parameter in compiled code.

We can now define the type of vec append function on vectors:

1 GURU is freely downloadable from http://www.guru-lang.org/.



vec_append : Fun(A:type)(spec n m:nat)
(l1:<vec A n>)(l2:<vec A m>).<vec A (plus n m)>

This type states that append takes in a type A, two specificational natural numbers n
and m, and vectors l1 and l2 of the corresponding lengths, and returns a new vector
of length (plus n m). This is how internal verification expresses the relationship
between lengths which we proved externally above. Type-checking code like this may
require the programmer to prove that two types are equivalent. For example, a proof
of commutativity of addition is needed to prove <vec A (plus n m)> equivalent
to <vec A (plus m n)>. Currently, these proofs must mostly be written by the
programmer, using special proof syntax, including syntax for inductive proofs.

GURU supports memory-safe programming without garbage collection, using a
combination of techniques [19]. Immutable tree-like data structures are handled by ref-
erence counting, with some optimizations to avoid unnecessary increments/decrements.
Mutable data structures like arrays are handled by statically enforcing a readers/writers
discipline: either there is a unique reference available for reading and writing the array,
or else there may be multiple read-only references. The one-writer discipline ensures
that it is sound to implement array update destructively, while using a pure functional
model for formal reasoning. The connection between the efficient implementation and
the functional model is not formally verified, and must be trusted. This is reasonable,
as it concerns only a small amount of simple C code (less than 50 lines), for a few
primitive operations like indexing a C array and managing memory/pointers.

3 Specification

The main property of versat is the soundness of the solver on top of the basic re-
quirements of GURU, such as memory safety and array-bounds checking. We encoded
the underlying logic of SAT in GURU to reason about the behavior of the SAT solver.
That encoding includes the representation of formulas and the deduction rules. For a
“UNSAT” answer, our specification requires that there exists a derivation proof of the
empty clause from the input formula. Note that most solvers can generate a model with
a “SAT” answer and those models can be checked very efficiently. So, we do not think
there is a practical advantage for statically verifying the soundness of “SAT” answers.
Also, it is important to note that the specification is the only part we need to trust. So,
it should be clear and concise. The specification of versat is only 259 lines of GURU
code. The rest of versat is the actual implementation and the proof that the imple-
mentation follows the specification, which will be checked by the GURU type system.

3.1 Representation of CNF Formula

The formula type is defined using simple data structures: 32 bit unsigned integers
for literals and lists for clauses and formulas. The lower 31 bits of the literal represent
the variable number, and the most significant bit represents the polarity. The GURU
definitions of those types are listed below. The word type is defined in GURU’s standard
library, and represents 32 bit unsigned integers. We emphasize that these simple data



structures are only for specification. Section 4 describes how our verification relates
them to efficient data structures in the implementation.

Define lit := word
Define clause := <list lit>
Define formula := <list clause>

3.2 Deduction Rules

There may be different ways to specify the unsatisfiability of formula. One could be a
model theoretic definition, saying no model evaluates a formula true or Φ � ⊥. Another
could be a proof theoretic one, saying the empty clause (False) can be deduced from the
formula or Φ ` ⊥. In the propositional logic, the above two definitions are equivalent.
In versat, we have taken a weaker variant of the proof theoretic definition, Φ `res ⊥
where only the resolution rule is used to refute the formula. Because `res is strictly
weaker than `, Φ `res ⊥ still implies Φ � ⊥. So, even though our formalization is
proof theoretic, it should be possible to prove that our formalization satisfies a model
theoretic formalization.

The pf type encodes the deduction rules of the propositional logic and pf objects
represents proofs. Figure 1 shows the definition of pf type and its helper functions.
cl subsume is a predicate that means c1 subsumes c2, which is just a subset function
on lists defined in GURU’s standard library. And is resolvent is a predicate that
means r is a resolvent of c1 and c2 over the literal l. Additionally, cl has checks
that the clause contains the given literal, and cl erase removes all the occurrences
of the literal in the clause. Also, tt and ff are Boolean values defined in the library.
The <pf F C> type stands for the set of proofs that the formula F implies the clause
C. Members of this type are constructed as derivation trees for the clause. Because this
proof tree will not be generated and checked at run-time, the type requires the proper
preconditions at each constructor. GURU’s type system ensures that those proof objects
are valid by construction.

The pf asm constructor stands for the assumption rule, which proves any clause in
the input formula. The member function looks for the clause C in the formula, returning
tt if so. The pf sub constructor stands for the subsumption rule. This rule allows to
remove duplicated literals or change the order of literals in a proven clause. Note that the
constructor requires a proof d of C’ and a precondition u that C’ subsumes C. Finally,
pf res stands for the resolution rule. It requires two clauses (C1 and C2) along with
their proofs (d1 and d2) and the precondition u that C is a resolvent of C1 and C2 over
the literal l.

3.3 The answer Type

In order to enforce soundness, the implementation is required to have a particular return
type, called answer. So, if the implementation type checks, it is considered valid under
our specification. Figure 2 shows the definition of the answer type. The answer type
has two constructors (or values): sat and unsat. The unsat constructor holds two
subdata: the input formula F and a derivation proof of the empty clause, p. The formula



Define cl_subsume := fun(c1:clause)(c2:clause).
(list_subset lit eq_lit c1 c2)

Define is_resolvent := fun(r:clause)(c1:clause)(c2:clause)(l:lit).
(and (and (cl_has c1 (negated l))

(cl_has c2 l))
(and (cl_subsume (cl_erase c1 (negated l)) r)

(cl_subsume (cl_erase c2 l) r)))

Inductive pf : Fun(F : formula)(C : clause).type :=
pf_asm : Fun(F : formula)(C:clause)

(u : { (member C F eq_clause) = tt }) .<pf F C>
| pf_sub : Fun(F : formula)(C C’ : clause)

(d : <pf F C’>)
(u : { (cl_subsume C’ C) = tt }) .<pf F C>

| pf_res : Fun(F : formula)(C C1 C2 : clause)(l : lit)
(d1 : <pf F C1>)(d2 : <pf F C2>)
(u : { (is_resolvent C C1 C2 l) = tt }) .<pf F C>

Fig. 1. The pf data type and helper functions

F is required to make sure the proof indeed proves the input formula. The term (nil
lit) means the empty list of literals, meaning the empty clause. By constructing a
value of the type <pf F (nil lit)>, we know that the empty clause is derivable
from the original formula. (Note that the proof p is marked as specificational using the
spec keyword) The type checker still requires the programmer to supply the spec
arguments. However, those arguments will be erased during compilation. We only care
about the existence of such data, not the actual value. By constructing proofs only from
the invariants of the solver, GURU’s type system confirms that such proofs could always
be constructed without fail. So, making them specificational, hence not computing them
at run-time, is sound.

Inductive answer : Fun(F:formula).type :=
sat : Fun(spec F:formula).<answer F>

| unsat : Fun(spec F:formula)(spec p:<pf F (nil lit)>).<answer F>

Fig. 2. The definition of the answer type

3.4 Parser and Entry Point

The formula type above is still in terms of integer and list data structures, not a stream
of characters as stored in a benchmark file. The benchmark file has to be translated to
GURU data structure before it can be reasoned about. So, we include a simple recursive



parser for the DIMACS standard benchmark format, which amounts to 145 lines of
GURU code, as a part of our specification. It might be possible to reduce this using a
verified parser generator, but we judge there to be more important targets of further
verification. Similarly, the main function is considered a part of the specification, as the
outcome of the solve function is an answer value, not the action of printing ”SAT”
or ”UNSAT”. The main function simply calls the parser, passes the output to the solve
function, and prints the answer as a string of characters.

4 Implementation and Proof

The specification in Section 3 does not constrain the details of the implementation very
much. For a trivial example, a solver that just aborted immediately on every input for-
mula would satisfy the specification. So would a solver that used the naive data struc-
tures for formulas, or a naive solving algorithm. Therefore, we have imposed an addi-
tional informal constraint on versat, which is that it should use efficient low-level
data structures, and should implement a number of the essential features of modern
SAT solvers. The features implemented in versat are conflict analysis, clause learn-
ing, backjumping, watched literals, and basic decision heuristics. Also, each of these
features is implemented using the same efficient data structures that can be found in
a C-language implementation like tinisat or minisat. However, implementing
more features and optimizations make it more difficult to prove the soundness property.

Modern SAT solvers are driven by conflict analysis, during which a new clause is
deduced and recorded to guide the search. Thus, the critical component for soundness
is the conflict analysis module, which can be verified, to some extent, in isolation from
the rest of the solver. Verifying that every learned clause is a consequence of the input
clauses ensures the correctness of UNSAT answers from the solver, in the special case
of the empty clause. Using the internal-verification approach described in the previous
section, the conflict analysis module enforces soundness by requiring that with each
learned clause added to the clause database, there is an accompanying specificational
proof (the pf datatype described in Section 3). In this section, we explain some of
the run-time clause data structure along with the invariants, and the conflict analysis
implementation.

4.1 Array-based Clauses and Invariants

In the specification, the data structure for clauses is (singly linked) list, which is easier
to reason about. However, accessing elements in a list is not as efficient as an array.
The elements of an array are more likely in the same cache line, which leads to a faster
sequential access, as elements in a linked list are not. Also arrays will use less mem-
ory than lists, which need extra storage for pointers. So, at the implementation level,
versat uses array-based clauses with invariants as defined in Figure 3. An <array
lit n> object stands for an array of literals of size n. The variable nv represents the
number of different variables in the formula F. It is also the maximum possible value for
variable numbers as defined in the DIMACS file format (variables are named from 1 up
to nv). The predicate (array in bounds nv l) used in the invariant u1 means



every variable in the array l is less than or equal to nv and not equal to zero. The invari-
ant u1 is used to avoid run-time checks for bounds when accessing a number of look-up
tables indexed by the variable number, such as the current assignment, reference to the
antecedent clauses, and decision level for the variable. It also implicitly states that the
array l is null-terminated. In array-based clauses, the word value zero is used as the
termination marker, instead of keeping a separate run-time variable for the length of the
array. The second invariant u2 states that the clause c, which is proved by pf c, is the
same as the interpretation of l, where to cl is our interpretation of an array as a list.
Again, this interpretation is only specificational and not performed at run-time.

Inductive aclause : Fun(nv:word)(F:formula).type :=
mk_aclause : Fun(spec n:word)(l:<array lit n>)

(spec nv:word)(spec F:formula)
(u1:{ (array_in_bounds nv l) = tt })
(spec c:clause)(spec pf_c:<pf F c>)
(u2:{ c = (to_cl l) })
.<aclause nv F>

Fig. 3. The aclause type for the array-based clauses and invariants

At the beginning of execution, versat converts all input clauses into <aclause
nv F> objects. In order to satisfy the invariants, the conversion function checks that
every variable is within bounds and internally proves that the interpretation of the output
array is exactly the same as the input list-based clause. Then, every time a new clause is
learned, a new <aclause nv F> object is created and stored in the clause database.
Remember the soundness of the whole solver requires a <pf F (nil lit)> ob-
ject, which is a proof of the list-based empty clause. Assume we derived the empty
array-based clause at run-time. From the invariant u2, we know that there exists an
interpretation of the array clause. And we proved a theorem which states that the only
possible interpretation of the empty array is the empty list, (nil lit). Now, we can
conclude that the interpretation is indeed the empty list-based clause, which is proven
valid according to another invariant pf c. Thus, it suffices to compute the empty array-
based clause to prove the empty list-based clause.

4.2 Conflict Analysis with Optimized Resolution

The conflict analysis is where a SAT solver deduces a new clause from the existing set
of clauses by resolution. Usually, a series of resolutions are applied until the first unique
implication point (UIP) clause is derived. In order to speed up the resolution step, ad-
vanced solvers like minisat use a number of related data structures to represent the
intermediate conflict clauses and perform resolutions efficiently. In versat, we im-
plemented this optimized resolution and proved the implementation is sound according
to the simple definition of is resolvent in the specification.

Figure 4 shows the data structure and invariants of intermediate conflict clauses,
ResState, which are maintained after each resolution step over the course of conflict



analysis. Those invariants are sufficient to prove the soundness of versat’s conflict
analysis. Figure 5 summarizes the variables used in the ResState type. The conflict
clause is split into the literals assigned at the previous decision levels (c1) and the lit-
erals assigned at the current level (c2) according to the invariant u5. So, the complete
conflict clause at the time is (append c1 c2). Notice that c2 is declared as a spec-
ificational data with the spec keyword. During conflict analysis, versat does not
build each intermediate conflict clause as a single complete clause. Instead, the whole
conflict clause is duplicated in a look-up table (vt), and it keeps track of the number of
literals assigned at the current level, which is the c2l, as stated by the invariants u1,
u2 and u3. The u2 and u3 ensure that the conflict clause and the table contain exactly
the same set of literals. The look-up table vt enables a constant time check whether a
literal is in the conflict clause, which makes duplication removal and other operations
efficient. And it also enables a constant time removal of a literal assigned at the current
level, which can be done by unmarking the literal on the vt and decrementing the value
of c2l by one. That also requires all literals in the list c2 to be distinct (u4), so that
removing all occurrences of a literal (as in the specification) will decrease the length
only by one (in the implementation). Note that, although the type of c2l is nat (the
Peano number), incrementing/decrementing by one and zero testing are constant time
operations just like the machine integer operations. Also, note that, some invariants, i.e.
all variables are within bounds, are omitted in the figure for clarity.

Inductive ResState : Fun(nv:word)(dl:word).type :=
res_state : Fun
(spec nv:word)
(spec dl:word)
(dls:<array word nv>)
(vt:<array assignment nv>)
(c1:clause)
(spec c2:clause)
(c2l:nat)
(u1:{ c2l = (length c2) })
(u2:{ (all_lits_are_assigned vt (append c2 c1)) = tt })
(u3:{ (cl_has_all_vars (append c2 c1) vt) = tt })
(u4:{ (cl_unique c2) = tt })
(u5:{ (cl_set_at_prev_levels dl dls c1) = tt })
.<ResState nv dl>

Fig. 4. The datatype for conflict analysis state

For the resolution function, we have proved that the computation of the resolvent
between the previous conflict clause and the antecedent clause follows the specification
of is resolvent, so that a new pf object for the resolvent can be constructed. At
the end of the conflict analysis, versat will find the Unique Implication Point (UIP)
literal, say l, and the ResState value will have one as the value of c2l. Because the
UIP literal must be assigned at the current decision level, it should be in c2 and the



Variable Description
nv the number of variables in the formula
dl the current decision level
dls a table of the decision levels at which each variable is assigned
vt a look-up table for the variables in the conflict clause
c1 the literals of the conflict clause assigned at the previous decision levels
c2 the literals of the conflict clause assigned at the current decision level
c2l the length of c2 (the number of literals assigned at the current decision level)
u1 the length of the list c2 is the same as the value of c2l
u2 all the literals in the conflict clause are marked on the table
u3 all the literals marked on the table are in the conflict clause
u4 all literals in the list c2 are unique
u5 all variables in c1 are assigned at the previous decision levels

Fig. 5. Summary of variables used in ResState

length of c2 is one due to the invariant u1. That means actually c2 is a singleton list
that consists of l. Thus, the complete conflict clause is (cons lit l c1). Then, an
array-base clause can be constructed and stored in the clause database, just as the input
list-based clauses are processed at the beginning of execution. Finally, versat clears
up the table vt by unmarking all the literals to recycle for the next analysis. Instead of
sweeping through the whole table, versat only unmarks those literals in the conflict
clause. It can be proved that after unmarking those literals, the table is clean as new
using the invariant u3 above. Correctness of this clean-up process is proved in around
400 lines of lemmas, culminating in the theorem in Figure 6, which states that the
efficient table-clearing code (clear_vars) returns a table which is indistinguishable
from a brand new array (created with array_new).

Define cl_has_all_vars_implies_clear_vars_like_new :
Forall (nv:word)

(vt:<array assignment nv>)
(c:clause)
(u:{ (cl_valid nv c) = tt })
(r:{ (cl_has_all_vars c vt) = tt })

.{ (clear_vars vt c) = (array_new nv UN) }

Fig. 6. The theorem stating correctness of table-clearing code

4.3 Summary of Implementation

The source code of versat totals 9884 lines, including proofs. It is hard to separate
proofs from code because they can be intermixed within a function. Roughly speak-
ing, auxiliary code (to formulate invariants) and proofs take up 80% of the entire pro-



gram. The generated C code weighs in at 12712 lines. The C code is self-contained
and includes the translations of GURU’s library functions being used. The source and
generated C code are available at http://cs.uiowa.edu/˜duoe/versat. All
lemmas used by versat have been machine-checked by the GURU compiler.

Properties not proved. First, we do not prove termination for versat. It could
(a priori) be the case that the solver diverges on some inputs, and it could also be
the case that certain run-time checks we perform (discussed in Section 7) fail. These
termination properties have not been formally verified. However, what users want is
to solve problems in a reasonable amount of time. A guarantee of termination does
not satisfy users’ expectations. It is more important to evaluate the performance over
real problems as we show in Section 5. Second, we have not verified completeness of
versat. It is (again a priori) possible that versat reports satisfiable, but the formula
is actually unsatisfiable. In fact, we include a run-time check at the end of execution, to
ensure that when versat reports SAT, the formula does have a model. But it would
take substantial additional verification to ensure that this run-time check never fails.

5 Evaluation

We compared versat to picosat-9362 with proof generation and checking for
certified UNSAT answers. picosat is one of the best SAT solvers and can generate
proofs in the RUP and TraceCheck formats. The RUP proof format is the official format
for the certified track3 of the SAT competition, and checker3 is used as the trusted
proof checker. The TraceCheck format4 is picosat’s preferred proof format, and the
format and checker are made by the developers of picosat. We measured the runtime
of the whole workflow of solving, proof generation, and checking in both of the formats
over the benchmarks used for the certified track of the SAT competition 2007. The
certified track has not been updated since then.

Figure 7 shows the performance comparison. The “versat” column shows the solv-
ing times of versat. The “picosat(R)” and “picosat(T)” columns shows the solving
and proof generation times of picosat in the RUP format and TraceCheck format,
respectively. Since checker3 does not accept the RUP format directly, rupToRes
is used to convert RUP proofs into the RES format, which checker3 accepts. The
“rupToRes” column shows the conversion times, and the “checker3” column shows the
times for checking the converted proofs. The “tracecheck” column shows the checking
times for the proofs in the TraceCheck format. The “Total(R)” and “Total(T)” shows
the total times for solving, proof generation, conversion (if needed), and checking in
the RUP format and TraceCheck format, respectively. The unit of the values is in sec-
onds. “T” means a timeout and “E” means a runtime error before timeout. The machine
used for the test was equipped with an Intel Core2 Duo T8300 running at 2.40GHz and

2 picosat is available at http://fmv.jku.at/picosat/
3 Information about the certified track, including the RUP/RES proof formats and
checker3/rupToRes, is available at http://users.soe.ucsc.edu/˜avg/
ProofChecker/

4 TraceCheck is available at http://fmv.jku.at/tracecheck/



3GB of memory. The time limits for solving, conversion, and checking were all 3600
seconds, individually.

Benchmarks versat picosat(R) rupToRes checker3 Total(R) picosat(T) tracecheck Total(T)
itox vc965 1.74 0.18 0.88 0.36 1.42 0.18 0 0.18
dspam dump vc973 3565 0.57 2.32 0.99 3.88 0.55 0.01 0.56
eq.atree.braun.7.unsat 15.43 2.63 42.13 2.78 47.54 2.92 1.1 4.02
eq.atree.braun.8.unsat 361.11 24.11 642.35 E E 26.47 9.11 35.58
eq.atree.braun.9.unsat T 406.94 T T 356.03 62.68 418.71
AProVE07-02 T T T T T
AProVE07-15 T 93.94 T T 103.95 20.44 124.39
AProVE07-20 T 262.05 T T 272.39 95.87 368.26
AProVE07-21 T 1437.64 T T 1505.24 E E
AProVE07-22 T 196.28 T T 239.59 116.8 356.39
dated-5-15-u T 2698.49 E E 2853.12 E E
dated-10-11-u T T T T T
dated-5-11-u T 255.06 E E 266.6 23.36 289.96
total-5-11-u 1777.26 91.27 E E 109.94 32.42 142.36
total-5-13-u T 560.96 E E 629.53 151.23 780.76
manol-pipe-c10nidw s 772.68 25.46 7.38 1.37 34.21 25.54 0.1 25.64

Fig. 7. Results for the certified track benchmarks of the SAT competition 2007

versat solved 6 out of 16 benchmarks. Since UNSAT answers of versat are
verified by construction, versat was able to certify the unsatisfiability of those 6
benchmarks. picosat could solve 14 of them and generated proofs in both of the
formats. However, the RUP proof checking tool chain could only verify 4 of the RUP
proofs within additional 2 hour timeouts (1 hour for conversion and 1 hour for check-
ing). So, versat was able to certify the two more benchmarks that could not be cer-
tified using picosat and the official RUP proof checking tools. On the other hand,
tracecheck could verify 12 of 14 TraceCheck proofs. Note that the maximum proof
size was about 4GB and the disk space was enough to store the proofs.

When comparing the trusted base of those systems, versat’s trusted base is the
GURU compiler, some basic datatypes and functions in the GURU library, and 259 lines
of specification written in GURU. checker3 is 1538 lines of C code. tracecheck
is 2989 lines of C code along with 7857 lines of boolforce library written in C. Even
though tracecheck is the most efficient system, the trusted base is also very large.
One could argue that GURU compiler is also quite large (19175 lines of Java). However,
because the GURU compiler is a generic system, it is unlikely to generate an unsound
SAT solver from the code that it checked, and the verification cost of GURU compiler
itself, if needed, should be amortized across multiple applications.

General performance. We measured the solving times of versat, minisat-2.2.0,
picosat-936 and tinisat-0.22 over the SAT Race 2008 Test Set 1, which was
used for the qualification round for the SAT Race 2008. The machine used for the mea-
surement was equipped with an Intel Xeon X5650 running at 2.67GHz and 12GB of



memory. The time limit was 900 seconds. In summary, versat solved 19 out of 50
benchmarks in the set. minisat solved 47. picosat solved 46. tinisat solved
49. versat is not quite comparable with those state-of-the-art solvers, yet. However,
to our best knowledge, versat is the only verified solver at the actual code level that
could solve those competition benchmarks.

6 Related Work

Verifying the correctness of each individual result of a solver is generally believed to
be easier than verifying the solver itself. For this reason, fields like SMT, where solvers
are typically on the order of several tens of thousands of lines of code, have usually
relied on result verification rather than solver verification. For example, there are many
recent works on producing proofs from SMT solvers, and several solvers, including
VERIT, Z3, and CVC3, can produce independently checkable proofs of the formulas
they claim are valid [3, 17, 15, 16, 8]. Challenges in this area are devising a common
proof format for SMT solvers, minimizing the overhead of proof production, and effi-
cient proof checking.

There have been a number of works aimed at verifying automated reasoning al-
gorithms. Lescuyer and Conchon verified a modern DPLL-based SAT solver in COQ
and extraced OCAML code to compile into machine binary [13]. Also, Shankar and
Vaucher’s work verifying a modern SAT solver is a noteworthy example [18]. They
concede, though, that while their model in PVS can be extracted to executable code,
that code would not be as efficient as an implementation intended for high-performance
use.

More closely related work is Marić’s formal proof of correctness for a modern
SAT solver implementing some low-level optimizations like watched literals in IS-
ABELLE/HOL [14]. He proves soundness, completeness, and termination for a mod-
ern SAT solver written in ISABELLE’s pure functional programming language. This
is a major achievement, requiring around 25,000 lines of ISABELLE proof scripts.
Marić proves much more about the solver than we do. In particular, proving termi-
nation would require extensive additional work for versat (see Section 7 below). But
like Shankar and Vaucher, Marić verifies a functional model of a solver. This model
uses pure-functional lists to represent clauses, and Peano naturals for variables. In con-
trast, versat uses mutable C arrays to represent clauses, and 32-bit machine words
for literals. Also, Marić’s resolution code is not optimized using a look-up table like
versat and other modern solvers. Our work can thus be viewed as taking up Marić’s
concluding challenge to verify high-performance SAT solvers with efficient low-level
data structures. To our knowledge, our work is the first to verify a deep property of a
high-performance implementation of a modern solver.

Armand et al. extend COQ with support for more efficient data structures, including
imperative arrays. They use their extended language to implement and verify an effi-
cient checker for proofs produced by an external (to COQ) SAT solver [2]. In contrast,
we have verified soundness of the efficient SAT solver itself. Both approaches use an
inefficient functional model of arrays for formal reasoning, which is then replaced dur-
ing compilation with a more efficient implementation. In our case, thanks to GURU’s



resource typing, this implementation is simply C arrays. Our readers/writers analysis
ensures this is sound, even with destructive updates. Armand et al. use less efficient
persistent arrays to combine destructive updating with persistence of old versions of
the array [6]. Also, while GURU does not require run-time garbage collection, Armand
et al. rely on compilation to OCAML (a garbage-collected language). GC overhead can
be substantial in practice [21]. Also, it is noteworthy that Darbari et al. implemented an
efficient TraceCheck proof checker in COQ [7].

7 Discussion

The idea for the specification was clear, and the specification did not change much since
the beginning of the project. However, the hard part was formalizing invariants of the
conflict analysis all the way down to the data structures and machine words, let alone
actually proving them. Modern SAT solvers are usually small, but highly optimized as
several data structures are cleverly coupled with strong invariants. The source code of
minisat and tinisat does not tell what the invariants it assumes. As we discov-
ered new invariants, we had to change our verification strategy several times along the
development. Sometimes, we compromised and slightly modified our implementation.
For example, the look-up table vt, used for resolution to test the membership of vari-
able in the current conflict clause, could be an array of booleans. Instead, we used an
array of assignment, which has three states of true, false, and unassigned. The other
solvers assume the current assignment table already contains the polarity of each vari-
able, which is an additional invariant. In versat, the table marks variables with the
polarity, which duplicates information in the assignment table, avoiding the invariant
above.

Unimplemented features. Some features not implemented in versat includes
conflict clause simplification and restart. Conflict clause simplification feature requires
to prove that there exists a certain sequence of resolutions that derives the simplified
clause. Although the sequence can be computed by topologically sorting the removed
literals at run-time, additional invariants would be required to prove it statically.

Run-time checks. Certain properties of versat’s state are checked at run-time,
like assert in C. We tried to keep a minimal set of invariants and it is simply not strong
enough to prove some properties. Run-time checks makes the solver incomplete, be-
cause it may abort. Also, it costs execution time to perform such a check. In principle,
all of these properties could be proved statically so that those run-time checks could
be avoided. However, stronger invariants are harder to prove. Some would require a
much longer development time and may not speed up the solver very much. Thus, the
priority is the tight loops in the unit propagation and resolution. However, one-time
procedures like initialization and the final conflict analysis are considered a lower pri-
ority. We did not measure how much those run-time checks cost, however, gprof time
profiler showed that they are not bottlenecking versat.

Verified programming in GURU. GURU is a great tool to implement efficient ver-
ified software, and the generated C code can be plugged into other programs. Opti-
mizing software always raises the question of correctness, where the source code can
get complicated as machine code. In those situations, GURU can be used to assure the



correctness. However, some automated proving features are desired for general usage.
Because versat heavily uses arrays, array-bounds checking proliferates, which re-
quires a fair amount of arithmetic reasoning. At the same time, when code changes over
the course of development, those arithmetic reasonings are the most affected and need
to be updated or proved again. So, automated reasoning of integer arithmetic would be
one of the most desired feature of GURU, allowing the programmer to focus on more
higher level reasonings.

8 Conclusion and Future Work

versat is the first modern SAT solver that is statically verified to be sound all the way
down to machine words and data structures. And the generated C code can be compiled
to binary code without modifications or incorporated into other software. This paper has
shown that the sophisticated invariants of the efficient data structures used in modern
SAT solvers can be formalized and proved in GURU. Future work includes proving
remaining lemmas and tuning the performance of versat. And we envision that the
code and lemmas in versat can be applied to other SAT-related applications.

References

1. T. Altenkirch. Integrated verification in Type Theory. Lecture notes for a course at ESSLLI
96, Prague, 1996. Available from the author’s website.

2. M. Armand, B. Grégoire, A. Spiwack, and L. Théry. Extending Coq with Imperative Features
and Its Application to SAT Verification. pages 83–98, 2010.

3. T. Bouton, D. Oliveira, D. Déharbe, and P. Fontaine. veriT: An Open, Trustable and Efficient
SMT-Solver. In R. Schmidt, editor, 22nd International Conference on Automated Deduction
(CADE), pages 151–156, 2009.

4. Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging
of sat and qbf solvers. In Ofer Strichman and Stefan Szeider, editors, SAT, volume 6175 of
Lecture Notes in Computer Science, pages 44–57. Springer, 2010.

5. Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model check-
ing using satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

6. S. Conchon and J.-C. Filliâtre. A persistent union-find data structure. In Proceedings of the
2007 workshop on Workshop on ML, pages 37–46. ACM, 2007.

7. Ashish Darbari, Bernd Fischer, and João Marques-Silva. Industrial-strength certified sat
solving through verified sat proof checking. In Ana Cavalcanti, David Déharbe, Marie-
Claude Gaudel, and Jim Woodcock, editors, ICTAC, volume 6255 of Lecture Notes in Com-
puter Science, pages 260–274. Springer, 2010.

8. L. de Moura and N. Bjørner. Proofs and Refutations, and Z3. In B. Konev, R. Schmidt,
and S. Schulz, editors, 7th International Workshop on the Implementation of Logics (IWIL),
2008.

9. George Hagen and Cesare Tinelli. Scaling up the formal verification of Lustre programs with
SMT-based techniques. In A. Cimatti and R. Jones, editors, Proceedings of the 8th Interna-
tional Conference on Formal Methods in Computer-Aided Design (Portland, Oregon), pages
109–117. IEEE, 2008.



10. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal
verification of an OS kernel. In J. Matthews and T. Anderson, editors, Proc. 22nd ACM
Symposium on Operating Systems Principles (SOSP), pages 207–220. ACM, 2009.

11. Nupur Kothari, Todd Millstein, and Ramesh Govindan. Deriving state machines from tinyos
programs using symbolic execution. In Proceedings of the 7th international conference
on Information processing in sensor networks, IPSN ’08, pages 271–282, Washington, DC,
USA, 2008. IEEE Computer Society.

12. Xavier Leroy. Formal certification of a compiler back-end, or: programming a compiler with
a proof assistant. In G. Morrisett and S. Peyton Jones, editors, 33rd ACM symposium on
Principles of Programming Languages, pages 42–54. ACM Press, 2006.

13. S. Lescuyer and S. Conchon. A Reflexive Formalization of a SAT Solver in Coq. In Emerging
Trends of the 21st International Conference on Theorem Proving in Higher Order Logics
(TPHOLs), 2008.

14. F. Marić. Formal verification of a modern SAT solver by shallow embedding into Is-
abelle/HOL. Theor. Comput. Sci., 411:4333–4356, November 2010.

15. S. McLaughlin, C. Barrett, and Y. Ge. Cooperating Theorem Provers: A Case Study Com-
bining HOL-Light and CVC Lite. Electr. Notes Theor. Comput. Sci., 144(2):43–51, 2006.

16. M. Moskal. Rocket-Fast Proof Checking for SMT Solvers. In C. Ramakrishnan and J. Rehof,
editors, Tools and Algorithms for the Construction and Analysis of Systems, 2008.

17. D. Oe, A. Reynolds, and A. Stump. Fast and Flexible Proof Checking for SMT. In B. Dutertre
and O. Strichman, editors, Workshop on Satisfiability Modulo Theories (SMT), 2009.

18. Natarajan Shankar and Marc Vaucher. The mechanical verification of a dpll-based satisfia-
bility solver. Electr. Notes Theor. Comput. Sci., 269:3–17, 2011.

19. A. Stump and E. Austin. Resource Typing in Guru. In J.-C. Filliâtre and C. Flanagan,
editors, Proceedings of the 4th ACM Workshop Programming Languages meets Program
Verification, PLPV 2010, Madrid, Spain, January 19, 2010, pages 27–38. ACM, 2010.

20. A. Stump, M. Deters, A. Petcher, T. Schiller, and T. Simpson. Verified Programming in
Guru. In T. Altenkirch and T. Millstein, editors, Programming Languges meets Program
Verification (PLPV), 2009.

21. F. Xian, W. Srisa-an, and H. Jiang. Garbage collection: Java application servers’ Achilles
heel. Science of Computer Programming, 70(2-3):89 – 110, 2008.


