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University of Pennsylvania

vilhelm@cis.upenn.edu

Nathan Collins
Portland State University

nathan.collins@gmail.com

Ki Yung Ahn

Portland State University

kya@cs.pdx.edu

ABSTRACT

Dependently typed programming languages provide a mechanism for integrating verification and programming
by encoding invariants as types. Traditionally, dependently typed languages have been based on constructive
type theories, where the connection between proofs and programs is based on the Curry-Howard correspondence.
This connection comes at a price, however, as it is necessary for the languages to be normalizing to preserve
logical soundness. Trellys is a call-by-value dependently typed programming language currently in development
that is designed to integrate a type theory with unsound programming features, such as general recursion,
Type:Type, and arbitrary data types. In this paper we outline one core language design for Trellys, and
demonstrate the use of the key language constructs to facilitate sound reasoning about potentially diverging
programs.
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1 Introduction

When writing verified programs, there are two tra-

ditional approaches. Theorem provers like ACL2

and Isabelle are used to perform verification exter-

nally [13, 24]. Programs are defined independently of

the desired invariants, and then those invariants are

verified after the fact. In addition to external verifi-

cation, languages based on constructive type theory,

such as Coq [34] and Agda [3] also support encod-

ing program invariants internally, using dependent

types. Specifications are tightly connected to code,

and the burden of external proof can be reduced.

For both approaches, general recursion (or the def-

inition of partial functions) poses challenges. Con-

structive type theories require functions to terminate

on all inputs to preserve soundness of the logic un-

der the Curry-Howard isomorphism. Sophisticated

techniques, such as encoding possibly-diverging com-

putations as co-inductive data, are required to define

truly partial functions [5]. Alternatively, one can for-

mulate a domain of definition for which the functions

are, in fact, total, using an accessibility predicate [2].

This basic idea has also been used for higher-order

logics [15]. Relatively few theories have been pro-

posed for direct reasoning about general recursion;

examples are LCF, LTC and VeriFun [20, 4, 35].

The Trellys project is a collaborative research ini-

tiative to design a dependently typed programming

language with direct support for general recursion

and other features such as Type:Type, which, like

general recursion, are unsound under the

Curry-Howard isomorphism. The goal of Trellys is to

bridge the gap between dependently typed languages

and program logics, allowing a programmer to utilize

both internal and external verification techniques in

the presence of these logically unsound features.

Trellys is also intended as a practical programming

language. By removing the constraint that all pro-

grams terminate, we are forced to consider details

such as evaluation strategy, since the termination

behavior of a term in a language with general recur-

sion can vary if the reduction strategy is changed.

For Trellys, we have chosen call-by-value reduction

because of the simplicity of the cost model it pro-

vides. This choice has far reaching consequences on

the design of the logic used for verification in Trellys.

In this paper, we address and propose solutions to

a number of the issues encountered at this particu-

lar point in the design space: a call-by-value depen-

dently typed language with general recursion.

We identify several problems encountered when

trying to integrate dependent types with general re-

cursion:

• How do we exploit the fact that inside pro-

grams, variables bound in those programs

range over values, while allowing proofs ab-

stractions to range over all programs1, includ-

ing ones that diverge?

• The theory of call-by-value β-equality is fairly

weak, given the restriction that the argument

to β-reduction must be a value. How can we

strengthen this equality to include all argu-

ments that provably have values, but are not

syntactically values?

• The natural way to prove theorems like asso-

ciativity of append is by induction on the struc-

ture of a value. How can we strengthen such

theorems to apply to all programs, including

possibly diverging ones?

In solving these problems, we develop the main con-

tributions of this paper:

• We define a judgmental notion of value

that distinguishes variables contextually. This

is achieved by marking variables introduced

during quantification by whether or not they

should be treated as values. The syntactic no-

tion of value is then changed to be a judgmen-

tal notion, which classifies those variables as

ranging over values or expressions, depending

on how they are marked in the context.

• We integrate a notion of termination cast

from our previous work (see Section 8) with

call-by-value reduction, so that programs that

are proved to be terminating can be considered

to be values, for purposes of β-reduction.

• We introduce a non-computational termina-

tion case form, which allows us to case-split

during reasoning on whether a program termi-

nates or diverges. Using this, many theorems

can be generalized to hold for all programs, not

1We write “program” for terms in the non-logical fragment

of the language, and write “proof” for terms in the logical

fragment.
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just terminating ones. This generalization is

quite useful in practice, as it means that the

theorems can be applied without needing to

prove that their arguments are terminating.

This paper concerns the expressiveness of depen-

dently-typed core languages. Its purpose is to ex-

plain these novel features through examples, describ-

ing the problems that non-termination and call-by-

value reasoning bring to full-spectrum dependent type

systems, and informally describing how these fea-

tures can provide solutions to these problems. This

paper discusses these ideas in the context of Sep3,

one of several core language designs that we are de-

veloping in the Trellys project. The Sep3 core lan-

guage is a work-in-progress, and still under develop-

ment. As a result it has not been subject to meta-

theoretic study and proofs of standard type system

results (such as type soundness) are beyond the scope

of this paper. In this regard, it is similar to works

like that on ΠΣ, which explore a novel language de-

sign without conducting any substantial metatheo-

retic investigations [1]. Indeed, tools as important for

research in dependent type theory as Coq and Agda

lack (in their current as opposed to historic forms) a

complete metatheory, and soundness bugs have been

found in recent years in both tools [12, 25].2 The goal

of achieving highly reliable proof assistants by strin-

gent metatheoretic analysis, and even verification of

their implementations, is one we strongly endorse.

But to warrant the tremendous theoretical and en-

gineering investment required to realize such a goal,

it is necessary first to investigate language designs

carefully, to ensure they are adequate for their ap-

plications in practice. It is in this exploratory spirit

that we study our proposed language design from

the perspective of expressivity and applicability, and

defer its metatheoretic analysis to future work.

This article is an extension of an earlier paper [14].

The organization of the paper has changed slightly,

and the Sep3 language definition has been mildly ex-

tended. More significant changes include:

• Section 6.1 describes a number of lightweight

proof automation techniques we developed in

the course of experimenting with Sep3. Sep3

is designed as a core language design, and as

2The bug in Coq, despite being 4.5 years old, still persists

in the most recent version of Coq, Coq 8.4.

Γ ⊢ p : P Proof p shows proposition P

Γ ⊢ P : Formula P is a well-formed formula

Γ ⊢ t : T Term t has type T

Γ ⊢ val t Term t has a value

t1  t2 Term t1 reduces to t2

in one step

t1  
<m t2 Term t1 reduces to t2

within m steps

?!2 Basic judgment forms

a result is rather verbose. The techniques de-

scribed in this section demonstrate that – with

relatively simple methods – we can eliminate

some of the drudgery from programming with

the core language.

• Section 7 describes a solution in Sep3 to a veri-

fication problem for an interpreter for SK com-

binators. This problem, taken from the 2012

VSTTE Verified Software competition is in-

teresting because the central program in ques-

tion (i.e., the interpreter) is non-terminating.3.

Though the Sep3 solution was not submitted

to the competition, in this section we contrast

the Sep3 solution with published solutions of

systems that did compete.

The remainder of this paper is structured as fol-

lows. Section 2 provides a brief overview of a Sep3,

and outlines the key design principles we followed. In

Sections 3 through 5 we detail the problems identified

above and present their associated solutions. Sec-

tion 6 gives a brief overview of our experiences using

a prototype implementation of Sep3, identifies oppor-

tunities for proof automation, and discusses an ex-

ample proof. Section 7 presents the larger case study

of verification of properties of the SK-combinator in-

terpreter. Section 8 compares Trellys with related

work. We conclude and identify directions for future

work in Section 9.

2 Language Overview

The Sep3 language is one core language that we

are developing to explore the design space of de-

pendently typed languages. This name is short for

3See https://sites.google.com/site/vstte2012/compet

Author Stump was a co-organizer of the competition, and

submitted the problem description upon which this section

is based.



variables w,x,y,z, f, q

natural numbers m,n

expressions e ::= p | t

classifiers A ::= P | T

proof conversion context P̂ ::= ... P ... | ~p

program conversion context T̂ ::= ... T ... | ~p

typing contexts Γ ::= ∅ | Γ, x:A | Γ, x:Aval

substitution σ ::= [e1/x]e2 | [e1/x1, . . . , ei/xi]et

proofs p ::=

x | \(x:A) => p | p e abstraction and application

| join n equality axiom

| valax t value axiom

| termcase t {y} of abort → p1 | ! → p2 termination case

| ord p | ordtrans p1 p2 ordering axiom, transitivity

| ind f(x:T) [q]. p induction

| case t {y} p of C1 → p1 ... Cn → pn case analysis

| pack x,p exists intro

| unpack p as (x,p) in p exists elim

| conv p at P̂ conversion

| let x = p1 in p2 let-proof

| let x {y} = t in p let-prog

| contra p1 | contraabort p1 p2 contradiction

propositions P ::=

forall (x:A). P | exists (x:A). P quantification

| t1 = t2 | t1 < t2 equality, ordering

| t! termination

programs and types t,T ::=

x | \(x:A) -> t | t e abstraction and application

| (x:A) -> T dependent function type

| Type type of types

| rec f(x:T1). t2 recursion

| conv t at T̂ conversion

| \[x:A] -> t | t [e] implicit abs. and app.

| [x:A] -> T implicit function type

| case t {y} of C1 → t1 ... Cn → tn case analysis

| T t1 ... tn | C datatype, data constructor

| abort T failure

| tcast t by p termination cast

| let x = p in t let-proof

| let x {y} = t1 in t2 let-prog

?!1 Sep3 basic syntax
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unannotated programs u,U ::=

x | \x -> u | u1 u2 abstraction and application

| (x:A) -> U dependent function type

| Type type of types

| rec f(x). u recursion

| T u1 ... un | C datatype, data constructor

| case u {y} of C1 → u1 ... Cn → un case analysis

| abort failure

| tcast u termination cast

| let x = u1 in u2 local binding

unannotated program values v ::=

\x -> u abstraction

| (x:A) -> U dependent function type

| Type type of types

| rec f(x). u recursion

| C v1 ... vn constructions

| T v1 ... vn datatype

| tcast u termination cast

?!3 Sep3 unannotated syntax

|x| = x

|C| = C

|\(x:T) -> t| = \x -> |t|

|\[x:A] -> t| = |t|

|\(x:P) -> t| = |t|

|rec f(x:t). t| = rec f(x). |t|

|t1 t2| = |t1| |t2|

|t1 [t2]| = |t1|

|t1 p| = |t1|

|conv t at T| = |t|

|case t {y} of C1 → t1 ... Cn → tn| = case |t| {y} of C1 → |t1| ... Cn → |tn|

|tcast t by p| = tcast |t|

|abort t| = abort

|(x:A) -> T| = (x:|A|) -> |T|

|[x:A] -> T| = (x:|A|) -> |T|

|Type| = Type

|let x {y} = t1 in t2| = let x = |t1| in |t2|

|let x = p in t| = |t|

?!4 Erasing annotated programs to unannotated programs.



x : A ∈ Γ
Γ ⊢ x : A

TVar
Γ ⊢ val t

Γ ⊢ valax t : t!
TValAx

Γ, x : T ⊢ p : P

Γ ⊢ \(x : T) ⇒ p : forall(x : T).P
TLamProof

Γ ⊢ p : forall(x : A).P Γ ⊢ e : A

Γ ⊢ p e : [e/x]P
TAppProof

Γ ⊢ |t1| <m t′1 Γ ⊢ |t2| <m t′2 t′1 ≡ t′2 Γ ⊢ t1 : T1 Γ ⊢ t2 : T2
Γ ⊢ join m : t1 = t2

TJoin

Γ, y : t = abort t′ ⊢ pa : P Γ, y : t! ⊢ p! : P Γ ⊢ t : t′

Γ ⊢ termcase t {y} of abort → pa | ! → p! : P
TTermCase

Γ ⊢ p : (Γ ⇃ P̂ )

Γ ⊢ conv p at P̂ : (Γ ⇂ P̂)
TConvProof

Γ ⊢ val t1 Γ ⊢ val t2 Γ ⊢ p : t2 = Ci u0 . . . t1 . . . un
Γ ⊢ ord p : t1 < t2

TOrd

Γ ⊢ p1 : t1 < t2 Γ ⊢ p2 : t2 < t3

Γ ⊢ ordtrans p1 p2 : t1 < t3
TOrdTrans

Γ, x : T, f : forall(y : T)(eq : y < x).[y/x]P ⊢ p : P

Γ ⊢ ind f (x : T) [u].p : forall(x : T)(u : x!).P
TInd

Γ ⊢ x : T Γ, x : T ⊢ p : P

Γ ⊢ pack x, p : exists (x : T).P
TPack

Γ ⊢ p1 : exists (y : T).P2 Γ, x : T, p2 : P2 ⊢ p3 : P3

Γ ⊢ unpack p1 as (x, p2) in p3 : P3
TUnpack

Γ ⊢ t′ : C′ a

Γ ⊢ p : t′!

Γ ⊢ C′ : (y : A1) → Type

For each branch Ci w → pi

Γ ⊢ Ci : (y : A1) → (x : A2) → C′ y

Γ, w : [a/y][w/x]A2
val

, z : t′ = C a w ⊢ pi : P

Γ ⊢ case t′ {z} p of Ci w → pi : P
TCaseProof

Γ ⊢ P : Formula

Γ ⊢ pa : t = abort T Γ ⊢ pt : t!

Γ ⊢ contrabort pa pt : P
TContraAbort

Γ ⊢ P : Formula

Γ ⊢ pa : t = abort T Γ ⊢ pt : t!

Γ ⊢ contrabort pa pt : P
TContraAbort

Γ, x : P1 ⊢ p2 : P2 Γ ⊢ p1 : P1
Γ ⊢ let x = p1 in p2 : P2

TLetProofProof

Γ, x : T, y : x = t ⊢ p : P Γ ⊢ t : T Γ ⊢ T : Type

Γ ⊢ let x {y} = t in p : P
TLetProofProg

?!5 Proof typing rules
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x : A ∈ Γ
Γ ⊢ x : A

TVar
Γ, x : Tval ⊢ t : T′

Γ ⊢ \(x : T) → t : (x : T) → T′
TLam

Γ ⊢ t : (x : A) → T Γ ⊢ e : A

Γ ⊢ t e : [e/x]T
TAppProg

x 6∈ |FV(t)| Γ, x : Aval ⊢ t : T′

Γ ⊢ \[x : A] → t : [x : A] → T′
TLamImp

Γ ⊢ t : [x : A] → T Γ ⊢ e : A

Γ ⊢ t [e] : [e/x]T
TAppImp

Γ, x : A ⊢ t : Type

Γ ⊢ (x : A) → t : Type
TPi

Γ ⊢ Type : Type
TType

Γ, x : T1, f : (x : T1) → T2 ⊢ t : T2

Γ ⊢ rec f (x : T1).t : (x : T1) → T2
TRec

Γ ⊢ t : (Γ ⇃ T̂)

Γ ⊢ conv t at T̂ : (Γ ⇂ T̂)
TConvProg

Γ ⊢ t : Type

Γ ⊢ abort t : t
TAbort

Γ ⊢ t : T Γ ⊢ p : t !

Γ ⊢ tcast t by p : T
TTCast

Γ ⊢ t′ : C′ a

Γ ⊢ C′ : (y : A1) → Type

For each branch Ci w → ti

Γ ⊢ Ci : (y : A1) → (x : A2) → C′ y

Γ, w : [a/y][w/x]A2
val

, z : t′ = C a w ⊢ ti : t

Γ ⊢ case t′ {z} of Ci w → ti : t
TCaseProg

Γ, x : P ⊢ t : T Γ ⊢ p : P

Γ ⊢ let x = p in t : T
TLetProgProof

Γ, x : T1, y : x = t1 ⊢ t2 : T2 Γ ⊢ t1 : T1 Γ ⊢ T : Type

Γ ⊢ let x {y} = t1 in t2 : T2
TLetProgProg

?!6 Program typing rules

evaluation contexts

E ::= � | E u | v E | case E of Cix0 . . . xn → ui | let x = E in u

u u′

E[u] E[u’]
CtxStep

E[abort] abort
EAbort

E[(\x -> t) v] E[[v/x]t]
EBeta

E[letx = v in u] E[[v/x]u]
Let

E[(rec f(x).u) v] E[[rec f(x).u/f, v/x]u]
Rec

E[tcast v] E[v]
TCast

E[case Cj v0 . . . vn of Cix0 . . .xn → ui] E[[v0/x0, . . . , vn/xn]uj]
CaseTerm

?!7 CBV Operational Semantics for Programs



“separation of proof and program”, indicative of the

syntactic separation in the language between proofs

and programs (and similarly, between propositions

and types). Proofs can mention programs without

invoking them. We dub this capability “Freedom

of Speech”. Conversely, programs can use proofs to

help demonstrate to the type checker that invariants

expressed using dependent types hold. A central fea-

ture design decision is that all proofs are computa-

tionally irrelevant: they are erased prior to reduc-

tion. We also allow programmers to mark certain

parts of programs as compile-time. They will also be

erased prior to reduction.

In the exposition and judgments that follow, we

use a few conventions to make the syntactic distinc-

tion clear. The metavariable p refers to proofs, and

P to propositions. Propositions classify proofs (i.e.

p : P), in the sense that types classify programs in

the programming language. The programming lan-

guage, in contrast, has a collapsed syntax where pro-

grams and types are taken from a single syntactic

category. We will use metavariables t and T for ex-

pressions when we wish informally to emphasize the

roles of subject (t) and classifier (T), respectively.

We will use the metavariable e to represent either

proofs (p) or programs (t) and the metavariable A to

represent either propositions (P) or program types

(T). The metavariables x, y, f, and q range over

both program and proof variables.

The syntax of the features of Sep3 that we discuss

in this paper is summarized in Figure 1. Various

judgments used in the paper are summarized in Fig-

ure 2. Typing rules for proofs are given in Figure 5,

and for programs in Figure 6. Typing is defined

for annotated programs (and proofs). We also de-

fine the syntax of unannotated programs in Figure 3.

The language’s call-by-value (CBV) operational se-

mantics is defined on unannotated programs in Fig-

ure 7. Annotated programs erase to unannotated

ones (with similar names), using an eraser function

defined in Figure 4. This function is also invoked

in the TLamImp rule, to ensure that a compile-time

input is not used in the erasure of the body of the

compile-time abstraction \[x:A] -> t. In the rules,

we assume all typing contexts are well-formed; that

is, for any x : A in a context Γ the type A is kindable.

In the proof fragment this requires the kinding judg-

ment Γ ⊢ P : Formula over propositions. We elide

the definition.

As noted above, Sep3 is intended as a core lan-

guage, so we are willing to require significant anno-

tations in order to avoid complicating the design with

complex machinery for type inference or term recon-

struction. As the examples later in this paper make

apparent, writing proofs and programs directly in the

core language can be burdensome. However, we plan

to eventually reduce this load with surface language

features – such as proof tactics and integration with

automated reasoning tools – that can automate the

insertion of core language annotations.

Annotations and Erasure The use of annota-

tions in Sep3 ensures typing is algorithmic. These

annotations do not have computational content, as

they are erased prior to reduction. For example,

changing the type of a program requires a program-

mer to explicitly insert the cast (conv) into the pro-

gram. But such casts are dropped by erasure. Era-

sure also drops type annotations on abstractions, and

all proofs. This is because proofs in Sep3 are purely

specificational, and do not have any run-time behav-

ior.

Sep3 provides a mechanism for a programmer to

specify which programs should be preserved across

the eraser, by allowing abstractions and applications

to be annotated as compile-time or run-time. For

example, type arguments to polymorphic functions

generally do not contain computational content and

are annotated as compile-time. In the concrete syn-

tax of the language presented in this paper, compile-

time abstractions are marked by wrapping the ab-

straction variable and type annotation with square

brackets, as shown in the polymorphic identity func-

tion:

\[a:Type ] -> \(x:a) -> x

Similarly, applications to compile-time arguments

are marked with square brackets, as in the Nat type

argument to the identity function:

(\[a:Type ] -> \(x:a) -> x) [Nat] Z

Compile-time applications and abstractions are erased

before executing a program and when proving pro-

grams equal with join. Erasing compile-time el-

ements allow proofs of equality to be constructed

without reasoning about specificational data. For ex-

ample, two constructions of the empty vector VNil

(defined in the datatype section below) that differ
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only in the representations of the compile-time length

parameter (e.g. Z vs. plus Z Z) can be proved equal

without reasoning about equalities of addition since

the length index is marked compile-time. This ap-

proach adapts ideas on erasure from several previous

works [33, 17, 21].

Equality Formulas The Sep3 proof language in-

cludes a primitive formula representing the proposi-

tional equality of two programs, written t1 = t2. A

proof of an equality is given by the expression join n

where n is a meta-level natural number serving as an

upper bound on the number of reductions steps the

type checker will use when attempting to decide join-

ability of the respective programs. The typing rule

for join is shown as TJoin in Figure 5. In this rule

and throughout the sequel we denote α-equivalence

between programs t1 and t2 as t1 ≡ t2. TJoin makes

use of the eraser function (Figure 4). If a program in

an equality proved by join reduces to a normal form

in fewer steps than the bound given as an argument

to join, then we compare that normal form (mod-

ulo α-equivalence) with the program resulting from

reducing the other side of the equality in a similar

manner. Equalities can be proved between programs

that are non-terminating, provided that those pro-

grams are joinable in a number of steps less than or

equal to the given bounds.

Conversion Sep3 programs and proofs can uti-

lize equalities to change the type of a given proof or

program. The typing rule for conversion is shown

as rules TConvProof and TConvProg in Figures 5

and 6, respectively.

Syntactically, a conversion has the form conv t at T̂

(for programs) or conv p at P̂ (for proofs). This form

casts the type (or proposition) of the program (or

proposition) to the left of the at to the type indi-

cated by the conversion context to the right of the

at keyword. A conversion context has the syntac-

tic form of the underlying syntactic category (T or

P), extended with a special escape form. The escape

form ~p identifies locations where the type should

be changed using a proof of an equality t1 = t2.

We define functions ⇃ and ⇂ that replace an escape

occurring in a conversion context with the left (re-

spectively, right) hand side of the equation proved

by the escaped proof.

Γ ⇃ ˜p = t1 when Γ ⊢ p : t1 = t2

Γ ⇂ ˜p = t2 when Γ ⊢ p : t1 = t2

The ⇃ and ⇂ functions are defined recursively on

P and T. For any term that is not an escape, the

function defined is just applied to the subterms, and

the original term is returned. For example:

Γ ⇂ t e = (Γ ⇂ t) (Γ ⇂ e)

Consider the example of a length-indexed vector,

v of length plus Z n. Using join, we can construct

a proof p : plus Z n = n in a bounded number

of steps. Using a conv, we can then cast the type

of v from Vector a (plus Z n) to Vector a n by

changing the index from plus Z n to n using the

supplied equality proof.

conv v at (Vector a ~p)

Conversion in Sep3 is not automatically inferred,

so must be supplied by the programmer. This is be-

cause conversion is based on equality between pro-

grams, which is undecidable in Sep3, since the (pro-

gramming) language is not normalizing.

The let form for introducing local program bind-

ings includes an additional variable representing a

proof that equates the bound name with its defini-

tion. If the locally-bound name is captured in the

type of the body of the let term (due to a dependent

type), then it is necessary to cast the type of the

body to remove the bound variable. The additional

variable in the let binding provides the equation nec-

essary to perform this cast.

Termination Reasoning Termination of

programs is expressed with the termination formula,

t!, indicating a program t is total. Termination

proofs can be constructed in two ways. First, pro-

grams which can be judged (see Section 3) to be val-

ues, can trivially be proved terminating using the

valax (pronounced “value axiom”) form. This in-

cludes programs which are syntactic values. Fur-

thermore, termination proofs can be introduced us-

ing a termination case proof construct, termcase,

that case-splits non-constructively on the termina-

tion behavior of a program (see Section 5). Finally,

with contraabort we can combine clashing proofs

of termination and divergence for the same program

to reason using contradiction.

Recursion and Induction The Sep3 program-

ming language includes a rec form for defining gen-

eral recursive functions. This construct does not con-

strain the arguments to recursive calls, potentially al-

lowing diverging computation. The proof language,

in contrast, provides an ind form for induction over



programs. The TInd typing rule for this form re-

quires the argument to recursive calls to be strictly

decreasing in size. Recursive invocations of the for-

mula must provide a proof of this, written t’ < t,

constructed using the ord form. A structural or-

dering statement of this form can only be proved be-

tween programs t1 and t2 when both are terminating

and t1 is an application of a constructor to arguments

including t2. This ensures that the value of t1 is

structurally larger than the value of t2, so the induc-

tion is well founded. An ordtrans expresses tran-

sitivity of the structural ordering, thereby allowing

ind to be used for course-of-values induction. The

typing rules for ind, ord, and ordtrans are shown in

Figure 5, and the TRec typing rule for rec is shown

in Figure 6.

One could certainly imagine strengthening this or-

dering, but it is worth recalling that in the presence

of higher types, it is already quite powerful. For

example, terminating recursion based on a lexico-

graphic combination of the natural number ordering

with itself is subsumed by natural-number recursion

at higher-type. So one can easily prove that Ack-

ermann’s function, for example, is terminating us-

ing induction with our structural ordering over nat-

ural numbers. The proof is simply a nested natural-

number induction, where the outer induction proves

a quantified statement which is itself proved by an

inner induction, in the cases of the outer induction.

Similarly, mutual induction of multiple theorems can

be encoded as a single induction yielding a conjunc-

tion of proofs of the constituent theorems.

Data Types Sep3 includes support for algebraic

data types and indexed type families. These types

are purely programmatic data, and may include di-

verging programs. We use the term “inductive data-

type” to cover both.

An example non-indexed family is that of natu-

ral numbers, shown below. This definition is elabo-

rated to the core language by introducing constants

Nat : Type , Z : Nat, and S : (x:Nat) -> Nat.

data Nat : Type where

Z : Nat

S : (x:Nat) -> Nat

When case splitting on a program that yields an

element of an algebraic data type, in each branch we

get a proof that equates the scrutinee with the pat-

tern of the branch alternative. This proof is given a

name taht is supplied, in the case syntax, in braces

following the scrutinee program. Moreover, when

case-splitting in a proof, we are required to supply a

proof that the scrutinee terminates. This is because,

as just noted, (programmatic) datatypes may be in-

habited by diverging programs, and hence we must

know that the scrutinee does not diverge, in order to

case split safely on its form. To illustrate the case

typing rules, Figure 8 shows an example instantia-

tion of TCaseProof for Nat.

The TContra rule allows us to reason using con-

tradictions arising from equations between dissimi-

lar constructor expressions. For example, given an

proof of the S Z = Z, we can use contra to prove

any proposition.

Dependently typed languages typically include the

ability to define indexed type constructors, where

the index may vary in the result type of each con-

structor. Sep3 data types only support parameters

to types, where the range of every constructor must

be the same. Indexed types can be simulated, how-

ever, by having constructors for the datatype accept

proofs (as additional arguments) of equations that

constrain the type constructor parameters appropri-

ately. These proofs are then used to refine the type

of the data constructor when case-splitting on values

of the data type.

The encoding of the archetypal indexed data type

of length-indexed vectors is shown below. This de-

fines a polymorphic data type that carries its length

as a type constructor parameter. The type of VNil

requires a proof that the length n is equal to Z. Sim-

ilarly, the type of VCons constructor takes an argu-

ment m representing the length of the tail of the vec-

tor, as well as a proof that n is the successor of m.

data Vec : [a:Type ] [n:Nat] -> Type where

VNil : [q:n = Z] -> Vec a n

| VCons : [m:Nat] -> [q:n = S m] ->

(x:a)->(xs:Vec a m) ->Vec a n

The elaboration of type constructors to the core

language has a subtle interaction with erasure. The

elaboration of Vec results in a constant Vec : (a

:Type)-> (n:Nat)-> Type. The compile-time ar-

guments [a:Type] and [n:Nat] become run-time

arguments for the type constructor Vec. Without

this restriction, one can construct examples violat-

ing type soundness, where we use a (provable) equa-

tion like Vec [bool] [n] = Vec [nat] [n] for un-

soundly casting a vector of booleans to a vector of
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Γ ⊢ t : Nat

Γ ⊢ p : t!

Γ ⊢ Nat : Type

Γ ⊢ Z : Nat

Γ, z : (t = Z) ⊢ pz : P

Γ ⊢ S : (x : Nat) → Nat

Γ, w : Natval, z : (t = S w) ⊢ ps : P

Γ ⊢ case t {z} p of Z → pz; S w → ps : P

?!8 Case instantiation for natural numbers

naturals. One can then extract the head of the vector

at the wrong type. Making these parameters run-

time arguments Vec avoids this problem. On the

other hand, we can respect the stage (compile-time

or run-time) of these parameters when we add them

as inputs to the constructors for the datatype. So

the VNil constructor elaborates to a constant with

type [a:Type] -> [n:Nat] -> [q:n = Z] -> Vec

a n. The length index n is marked as compile-time,

and will be erased in applications of VNil.

Effects In the current Sep3 design, we do not pro-

vide a primitive language mechanism for handling

effects such as imperative state and exceptions. We

instead assume that these effects can be encoded

monadically. This design decision may lead readers

to question why we handle non-termination in a spe-

cial manner, when it can be encoded as a monadic

effect as well. Our response is one of intent – in this

design we are interested in allowing non-termination

not necessarily because we want to define partial

computations, but rather because general recursion

is often the most straightforward way to define func-

tions of interest, regardless of whether they termi-

nate. Languages that require termination of all func-

tions in contrast take the approach of encoding non-

termination indirectly. In the Sep3 design, we allow

a programmer to define functions directly with gen-

eral recursion, and then later prove termination sep-

arately. These positions occupy two different points

in the design space; we believe that the Sep3 design

offers the advantage of incrementality.

3 A Value Judgment

In Sep3, we syntactically classify some programs as

values, as is usual when defining a language. Typi-

cally, in a call-by-value language like Sep3 variables

are identified as values, since the operational seman-

tics of the language dictates that when reducing an

application the argument must be reduced to a value

to get call-by-value β-redex that can be reduced.

Hence, inside the body of the abstraction being ap-

plied, the bound variable can be assumed to range

over values, since it will only be instantiated by val-

ues.

However, in Sep3 we must distinguish between ab-

straction in the program fragment and in the proof

fragment: variables introduced by λ-abstraction in

programs will only be instantiated with values, while

λ-abstraction (that is, quantification) of programs

in the proof language is over program expressions,

not values. The distinction is important, because it

enables our “freedom of speech” principle. Proofs

can mention programs without the expectation that

those programs will be reduced (which would be dan-

gerous if they diverged). If it were necessary to re-

duce programs to values to instantiate a proof quan-

tifying over programs, then one of two strategies

would be required.

1. The operational semantics of the proof language

defined for meta-theoretical study would use a

call-by-value β-reduction rule. The soundness

of the proof fragment would depend on termi-

nation of the program fragment, but allowing

non-termination of the program fragment is an

explicit goal of the Sep3 language design.

2. The second possibility is to only instantiate

theorems about known terminating programs,

perhaps by requiring a syntactic value restric-

tion on applications of theorems quantified over

terminating programs. This restriction, while

sound, reduces the expressiveness of the lan-

guage, as there are many theorems that are

true regardless of whether it is possible to re-



x : Aval ∈ Γ
Γ ⊢ val x

ValVar

Γ ⊢ val\(x : A) → t
ValLam

∀i.Γ ⊢ val ti
Γ ⊢ val C t0 . . . tn

ValCons

Γ ⊢ val tcast t by p
ValTCast

?!9 Selected Value Judgment Rules

duce the programs those theorems range over

to values. For example, join m : plus x Z

= x regardless of whether x terminates. If x

diverges then both sides of the equality diverge,

and are hence still equal.

For Sep3, we modify the definition of the set of

programs which are values. In addition to a simple

syntactic definition, we utilize a judgmental defini-

tion of value, allowing the context to be used when

determining whether a term is a value. Later, we will

identify a class of syntactic values to be used only by

reduction. In the case of abstraction in the proof

fragment (Figure 5, rule TLamProof), the variable

is added to the context without a value annotation.

Conversely, in the program fragment (Figure 6, rule

TLamProg) the variable is added with an additional

val annotation on the typing assumption.

The value judgment for programs (Figure 9) in-

cludes a rule, ValVar, which identifies a variable as

a value if it occurs in the context with a val an-

notation. The value judgment includes a number of

axioms for each syntactic value form. We also show

a representative subset of syntactic forms that are

axiomatically judged values; others not depicted in-

clude dependent products, recursive functions, and

the classifier Type. Programs that can be judged to

be values can be proved to be terminating using the

valax construct (Figure 5). For example, we can

prove S Z terminates (represented by the proposi-

tion p : S Z !) because S Z is judgmentally a value.

More interestingly, if we have x : Natval in the typing

context we can prove S x ! using valax.

The ValCons rule identifies a constructor appli-

cation to arguments, each judged as values, to be

judged as a value. We utilize this rule when typing

case expressions in proofs scrutinizing program val-

ues. When case-splitting on a program value in a

proof, it is necessary to supply a proof to the case

expression that the scrutinee terminates, to ensure

that divergence of programs does not leak into the

proof language. We are guaranteed (by virtue of the

termination proof) that the scrutinee will terminate,

so we are also guaranteed that the normal form of the

scrutinee will be a constructor applied to arguments

that are values. Thus, when performing reasoning

within a case branch, the pattern variables for the

case branch will necessarily be instantiated with val-

ues. Consequently, when adding those variable to the

context when type checking a case branch, we mark

those variables as values, as shown in the TCaseProof

rule in Figure 5.

4 Evaluation with Termination Cast

In Sep3, propositional equalities are proved using

the join construct, which forms equalities by eval-

uating the erasure of each side of the equality to a

normal form or a maximum number of steps and then

comparing the resulting programs modulo α-equality

and dropping any tcast constructs. This means that

join depends on call-by-value reduction of programs,

where β-reduction can only be performed in a con-

text where the function argument is a value. How-

ever, reasoning in proofs is often on open programs,

where variables occurring in the propositional equal-

ities range over programs which need not be values.

Variables ranging over programs are not treated as

values due to the freedom-of-speech principle. This

principle was designed to allow proofs to quantify

over programs, including those that diverge.

Unfortunately, quantifying over all programs, not

just values, causes difficulty. Evaluating expressions

which include free program variables introduced by

quantifiers in proofs will result in a stuck term when-

ever such a variable occurs in the argument position

of a β-redex. We want to reason about programs, but

our most powerful tool (reasoning about equality un-

der β-reduction), is restricted because the programs

we wish to reason about might possibly diverge.

Consider a theorem that expresses that the appli-

cation of a polymorphic identity function to any ar-

gument (including diverging arguments) can always

be substituted with the argument itself.

The identity function and proof definitions are de-
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fined in the syntax of the Sep3 tool, which allows

top-level program declarations to be defined by com-

bining a type annotation and a program definition.4

For example, the Program declaration below defines

a name, id, and term \[a:Type] -> \(y:a) -> y,

with type [a:Type] -> \(y:a) -> a. Similarly,

id_is_id defines a proof with an associated quanti-

fied proposition.

Program id : [a:Type ] (x:a) -> a := x

Theorem id_is_id :

forall (a:Type )(x:a).id [a] x = x :=

join 100

This proof fails because the two programs are not

joinable. The reduction sequence below shows the

problem.

id [a] x {by erasure}

id x {by def. of id}

(\y.y) x 6→

The β-redex (\y.y) x is blocked because the Sep3

programming language has a call-by-value semantics,

and the variable x is not a value, as it was introduced

by a proof. The equality proved by join is too fine,

because it can only equate programs based on join-

ability using the call-by-value reduction semantics of

the programming language.

Consider the above example if a call-by-name eval-

uation strategy were used when proving equalities us-

ing join. The blocked β-redex (\y.y) x would step,

because it is not necessary to reduce the argument to

an application to a value prior to β-reduction. Mak-

ing such a change would be unsafe, however, because

it could allow us to observe different termination be-

haviors of the program, depending on whether the

program is being reduced inside a proof (using call-

by-name) or during actual execution (using call-by-

value).

To illustrate, consider the term (\x:Nat.Z) loop,

where loop stands for any diverging computation.

Inside a proof, using a call-by-name semantics we

can prove (\x:Nat.Z) loop = Z, while at run time

using call-by-value the program would diverge.

On the other hand, if the argument t to an appli-

cation is known to be terminating, because a proof

p:t ! is available, then the termination behavior of

such an application will remain the same, regardless

of whether it is reduced using call-by-name or call-

4The type annotation is necessary because the typechecker

implementation uses a bidirectional algorithm that combines

type checking with type synthesis.

by-value β-reduction.

Sep3 provides a termination cast construct, tcast,

that allows a programmer to mark expressions as

known to be terminating. The tcast construct takes

a program and a proof that the program has a value.

The TTCast typing rule for tcast is shown in Fig-

ure 6.

To allow reasoning over expressions including tcast

constructs, the semantics of the programming lan-

guage is augmented to allow an application with a

tcast argument to step, despite the subject of the

termination cast not necessarily being reduced to a

value. In effect, tcast allows a programmer to posit

a hypothetical value that the expression will reduce

to, and then continue reduction based on that hy-

pothesized value. This allows the language to prove

more equalities than would be possible if tcast were

not included.

Using tcast, a weaker form of the id_is_id the-

orem can be proved. The theorem is weakened to

only hold for terminating arguments, by adding an

additional parameter to the theorem that proves x is

terminating. The proof is shown below.

Theorem id_is_id_term :

forall (a:Type )(x:a)( x_term:x!).

(id [a] x = x) :=

join 100 :

(id [a] (tcast x by x_term) = x)

In Section 3 we introduced a value judgment to

differentiate between variables introduced by proof

abstractions from those introduced by program ab-

stractions. Using the value judgment, it is possible

to redefine the β-rule to use the value judgment.

Γ ⊢ val u′

Γ ⊢ E[(λ x.u) u′] E[[u′/x]u]
EBeta

This rule allows reduction to reuse the value judg-

ment, but it comes at the cost of complicating the

reduction relation. No longer is reduction defined

syntactically, but now it is a contextual relation. The

alternative approach, and the one we take in Sep3, is

to use the syntactic view of evaluation. We identify a

syntactic class of values for reduction purposes that

contains all of the syntactic forms which are trivially

judged to be values by the value judgment, repre-

sented by the production v in Figure 3. Also included

in this syntactic category are programs wrapped with

termination casts. Variables are not classified as val-

ues, as before. If a term can be judged a value, then



it is possible to extract a term in this class of syntac-

tic values using a termination cast. For example, if a

variable x is judged a value (but would not be syntac-

tically classified a value), then tcast x by valax x

is the associated syntactic value. In this way, we

simplify the reduction relation to use standard call-

by-value β-reduction over a class of syntactic values

including tcast constructs, while still using the value

judgment for typing.

When constructing a proof of equality using join,

the programs being equated are erased, as described

previously. However, the tcast constructs are pre-

served (the termination proof is dropped, as it has

no computational content). Additionally, reduction

allows a tcast to be dropped when the expression

being cast is a syntactic value. This prevents tcast

from blocking a redex, as would be the case with

(tcast \x.x by p) v.

Preserving termination casts during join reduc-

tion is necessary to allow join to construct equali-

ties between programs involving expressions that do

not normalize to values. After programs are reduced

with join, they are compared modulo termination

casts and renaming of bound variables.

Preserving termination casts when reasoning about

programs using join may cause a term to take more

reduction steps inside proofs, because the EBeta re-

duction step may duplicate tcast constructs requir-

ing a non-zero number of reduction steps to normal-

ize to values. This need not introduce inefficiencies in

compiled programs, because termination casts only

occur in proofs, which are erased during compilation.

5 Termination Case

Sep3 includes a termcase (Figure 5) construct that

allows a proof to case-split on whether a scrutinized

program terminates or diverges, with y bound as a

proof of the corresponding termination assumption

in each branch. In the terminates (!) branch, y is a

proof that the scrutinee terminates. In the diverges

(abort) branch, y is a proof that the scrutinee is

equal to abort, signifying divergence. The typing

rule TAbort, for abort in the annotated language,

requires an annotation t providing the type of the

abort term. Reduction for abort is defined by the

rule EAbort. If abort appears in evaluation posi-

tion, then the term immediately steps to abort. This

means that all provably diverging programs (identi-

fied by equivalence to abort) are contextually equiv-

alent.

The termcase construct is non-constructive, as it

axiomatizes excluded middle for termination, an un-

decidable property. This relies on an oracle that can

determine whether any given term normalizes to a

value. The construct can be viewed as an inter-

nalization of the theorem of type soundness for the

program fragment, relaxed to partial correctness: if

⊢ t : T, then either t ∗ v (where v is a syntactic

value) and ⊢ v : T , or else t diverges. This has al-

ready been observed in Wright and Felleisen’s classic

paper [36].

Using termcase we can strengthen proofs of alge-

braic theorems, which are subject to termination pre-

conditions, to stronger theorems that do not require

termination preconditions. As a simple example, we

can return to the proof of id_is_id from Section 4.

To prove the theorem above, it is necessary to have a

proof of termination available to tcast the variable

x, so that the join proof can succeed. Neverthe-

less, the theorem is valid for all inputs, irrespective

of termination behavior. Using termcase, this theo-

rem can be strengthened.

Theorem id_is_id :

forall (a:Type )(x:a).id [a] x = x :=

termcase x {x_term} of

abort ->

let u1 = join 100

: id [a] (abort a) = (abort a)

in conv u1

at (id [a] ~x_term = ~x_term)

| ! -> id_is_id_term a x x_term

In the abort branch for the id_is_id example

above, we do a conversion where we change a proof

of (id [a] (abort a)) = (abort a) to a proof of

(id [a] x) = x using a conversion context

(id [a] ~x_term) = ~x_term.

This shows how we can do multiple conversion

steps at one time, by including more than one splice,

although in this simple example both splices refer to

the proof x_term : (abort a) = x.

The proof does not require a separate lemma prov-

ing id to be a total function on terminating inputs.

This capability – proving theorems about programs

without proving those programs total – is an impor-

tant proof technique enabled by termcase. Although

id_is_id amounts to such a proof for this particular

example, in general termcase allows us to do alge-

braic reasoning without resorting to proving termi-
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nation of the functions we are reasoning over.

6 Implementation and Experience

To gauge the feasibility of the Sep3 language de-

sign, we have implemented a prototype type checker

and evaluator. This implementation has been use-

ful in guiding the language design, and the design

of Sep3 and the implementation have continued to

evolve in tandem. The implementation is available

online.5 The examples in this paper can be found in

Tests/unittests/PiI.sep.

Sep3 is designed as a core language, and requires

a large number of programmer annotations to get

the type checker to accept a program. Requiring

such a large number of annotations simplifies the de-

sign of the language and the implementation of the

tools, but it complicates using the language, as the

annotation burden is quite great. A second goal of

the Trellys project is to design a surface language

that allows many of the necessary core annotations

to be synthesized by a program analysis algorithm.

Through use of the core language implementation,

we have identified some initial approaches to au-

tomating proof and program construction, reducing

the programmer burden.

6.1 Proof Automation

Sep3 programs rely heavily on the use of join to

construct equations between programs, and the use

of conv to change the type of a term or a proof.

These tools are often irritatingly precise, as they pro-

vide a very low-level interface for proof. Quite often,

constructing a proof in this language consists of the

following.

1. Use join to prove a number of equations be-

tween programs.

2. Finesse the equations into just the right form.

3. Use conv, in concert with the generated equa-

tions, to cast the type of a term or the formula

of a proof.

In a number of instances, we can provide simple

automated support for common proof tasks. Below,

we describe a collection of such automated tactics,

starting with steps 2 and 3 from above, which are

quite simple, and finally addressing the first step,

5http://trellys.googlecode.com/svn/tags/

pii-release/lib/sepp

Theorem refl :

forall (a:Type )(t:a).t = t :=

join 0

Theorem sym :

forall (a:Type )(b:Type )(t1:a)(t2:b)

(p:t1 = t2 ).( t2 = t1) :=

conv (refl a t1) at ~p = t1

Theorem trans :

forall (a:Type )(b:Type )(c:Type)

(t1:a)( t2:b)(t3:c)

(p:t1 = t2)(q:t2 = t3 ).(t1 = t3) :=

conv p at t1 = ~q

?!10 Proofs that = is an equivalence.

which is considerably more complicated. The con-

structs for automated proof support will be used ex-

tensively in the examples in the remainder of this

section and the next.

First, the primitive propositional formula judging

two programs t1 and t2 to be joinable under call-by-

value reduction, t1 = t2, is an equivalence relation.

Moreover we can prove this within the language, as

shown in Figure 10.

Undoubtedly, these theorems are simple enough to

prove, but when it comes to using these lemmas, the

story is quite different. The equality of Sep3 is het-

erogeneous, as the types of the two sides of an equa-

tion can be different. Consequently, in the proofs

above we are required to take, as type parameters,

the types of the equated programs. In the absence of

general type inference support in Sep3, simply sup-

plying those type arguments leads to very verbose

programs. Because reasoning in Sep3 depends so

heavily on manipulation of equality proofs, the pro-

totype implementation provides primitive constructs

trans and sym for transitivity and symmetry respec-

tively that infer the necessary type arguments.

Even with primitives for reasoning about symme-

try and transitivity, verification often requires a large

number of tedious steps that amount to applications

of these operators. As an additional automation ca-

pability, the prototype implementation provides an

equiv form that eliminates the need to manually

perform this reasoning. Operationally, equiv col-

lects all of the (finite number of) equations present in

the current typing context and takes the symmetric-

transitive closure of them. Moreover, we associate

with each equation in the closure the proof term built



from applications of sym and trans. When check-

ing a proof term equiv against a particular formula

t1 = t2, the typechecker simply looks for the ex-

pected formula in the transitive-symmetric closure

and, if it is found, checks the associated proof term,

or alternatively raises an error if the formula is not

found.

Using equiv eliminates a great deal of the tedium

of working with equations in proof. After proving

just the right equalities, the next step is often to use

those equations to cast the type of a term or a proof.

And in Sep3, to do a cast requires the programmer

to supply a conv term with a conversion context

that identifies the proper places for those equations

to be used. The Sep3 implementation provides an

autoconv tactic that constructs a conversion con-

text syntactically. The tactic takes a term t and an

expected type – the intended type of the result of

the cast – T, and calculates a term conv t at C, for

some conversion context C. The autoconv tactic first

synthesizes the actual type S of t, and then does a

comparison between the actual type S and the in-

tended type T. We use the notation S|p to represent

the subterm of S occuring at position p, for some

subterm position p of S (and similarly for T and C).

If S|p and T|p differ, we check to see if there is an

equation in the context h : S|p = T|p. If so, then

we set Cp to be ~h (the escape of h). If S|p and T|p

are the same, then we set C|p to be S|p. As with the

equiv tactic, we do not need to trust the implemen-

tation of autoconv as the resuting conversion proof

conv t at C is subsequently checked using the core

typing rules.

The equiv and autoconv tactics compact the sec-

ond and third bookkeeping steps of proofs identified

above, but they do nothing to address the issue of

constructing initial set of equations using join. To

illustrate the usability challenges with reasoning di-

rectly with join, consider the proof of the property

and_commutes, capturing that the boolean && func-

tion commutes. This is proved in Figure 11.

In each case split on x and y, we get proofs x_eq

and y_eq that respectively prove formulas p = x and

p = y in each case branch, where p is the pattern (ei-

ther True or False in this example) associated with

the branch. Since the only tool we have to gener-

ate equalities between programs is normalization of

open programs using join, the programmer is forced

to prove a simpler equation using the patterns, and

then insert a conversion using the proofs of equali-

ties introduced by the case split. To simplify mat-

ters slightly, though, the False branch for x uses

autoconv to generate the conversion context auto-

matically.

In practice, using join to prove equations is even

more troubling, as the desired reduction may depend

on some intermediate term that we have an equa-

tion for, yet the intermediate term is not exposed in

the top level formula. For example, suppose the for-

mula to be proven is t1 = t2, and we have a proof

p : e = C in the context, where e is an arbitrary ex-

pression and C a nullary constructor. For the sake of

the example, assume that t1 reduces to some inter-

mediate term case e {e_eq} of C -> t2. Using

join, we would first prove that t1 equals case e {

e_eq} of C -> t2, and then conv with the equation

to get that this equals case C {e_eq} of C -> t2.

Finally, applying join again, we can get that the lat-

ter term equals t2. The issue here is that since e is

some arbitrary (and perhaps reducible) expression,

we are required to fiddle with the bound on reduc-

tion steps passed to join to ensure that we don’t

reduce e in the process of reducing t1. For if we re-

duce e to some e’, our equation e = C can no longer

be applied.

The difficulty with using join in this way is that

it is not aware of equations that are available in the

typing context, so it forces the programmer to man-

ually perform the task of rewriting intermediate pro-

grams using conv. A partial solution to this prob-

lem is to make the implementation of the reduction

semantics aware of equations, and to perform the

rewriting automatically. The Sep3 implementation

provides a tactic, called morejoin to do precisely

this. In our experience, this tactic has proved in-

valuable for constructing equations feasible for pro-

grams of any reasonable size. For example, in the

proof morejoin_and_commutes in Figure 11, all of

the cases are proven directly with the same invoca-

tion of

morejoin.

The interface for morejoin is quite simple – it sim-

ply takes a list of proofs and the expected equation

to be proved, and invokes the evaluator in the same

way as join. On the other hand, the implementation

is quite more involved, as it requires instrumenting
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Program (&&) : (x:Bool )(y:Bool ) -> Bool :=

case x {x_eq } of

True -> y

| False -> False

Theorem and_commutes :

forall(x:Bool )(y:Bool )( x_term:x!)( y_term:y!).

(x && y) = (y && x) :=

case x {x_eq } x_term of

True ->

(case y {y_eq } y_term of

True ->

let u1 = join 100 : (True && True ) = (True && True )

in conv u1 at (~ x_eq && ~y_eq ) = (~ y_eq && ~x_eq )

| False ->

let u1 = join 100 : (True && False) = (False && True )

in conv u1 at (~ x_eq && ~y_eq ) = (~ y_eq && ~x_eq ))

| False ->

(case y {y_eq } y_term of

True ->

let u1 = join 100 : (False && True ) = (True && False)

in autoconv u1 -- conv u1 at (~ x_eq && ~y_eq ) = (~ y_eq && ~x_eq )

| False ->

let u1 = join 100 : (False && False) = (False && False)

in autoconv u1) -- conv u1 at (~ x_eq && ~y_eq) = (~ y_eq && ~x_eq ))

Theorem morejoin_and_commutes :

forall(x:Bool )(y:Bool )( x_term:x!)( y_term:y!).

(x && y) = (y && x) :=

case x {x_eq } x_term of

True ->

(case y {y_eq } y_term of

True -> morejoin {sym x_eq ,sym y_eq ,x_term ,y_term}

| False -> morejoin {sym x_eq ,sym y_eq ,x_term ,y_term })

| False ->

(case y {y_eq } y_term of

True -> morejoin {sym x_eq ,sym y_eq ,x_term ,y_term}

| False -> morejoin {sym x_eq ,sym y_eq ,x_term ,y_term })

?!11 Conjuction is commutative



the evaluator to perform rewrites6. The proofs sup-

plied must either prove equations, which are treated

as left-to-right oriented rewrite rules, or else termi-

nation proofs, which are used to automatically insert

termination casts.

When reducing a term, if an application v1 t2

is encountered where v1 is a value, and the list of

proofs supplied to morejoin includes a proof of p:t2

!, then a termination cast is inserted around t2, and

v1 (tcast t2) is a β-redex. Furthermore, if the

term to be reduced is a case expression case t1 of

{ ...}, and the list of proofs supplied to morejoin

includes p : t1 = t2, then the term is rewritten to

case t2 of {...}, and reduction proceeds.

Combining inserting termination casts and rewrit-

ing is quite useful, as oftentimes we will want to prove

some formula f t1 = t2 where f does an immedi-

ate case-split on its argument, and we have proofs

of t1! and t1 = v1. Intuitively, these proofs imply

that the value of t1 is v1, so we would like to re-

duce f t1 and then reduce the case-split on v1. But

in general t1 need not actually reduce to v1 (or in-

deed any value), and so we need to insert a tcast

around t1 to enable the first reduction (of f t1).

Inserting this tcast around t1 prevents further re-

duction within t1 (since tcast E is not included as a

form of evaluation context in Figure 7). This means

that morejoin will reduce f t1 to a case-split on

tcast t1, and then substitute v1 for t1. The TCast

rule (of Figure 7) will then reduce this term to a case-

split just on v1, which can finally reduce using the

CaseTerm rule.

Inserting termination casts and rewriting case scru-

tinees can be justified quite directly.

If t  mv1 t2, and p:t2!, then join m : t =

v1 t2. If join 0 : v1 t2 = v1 (tcast t2 by p)

using transitivity we can prove t = v1 (tcast t2

by p). Similarly, for case expressions, if t m case

t1 of {...} and p : t1 = t2, then conv (join m

)at t = case ~p of {...}. If case t2 of {...}

reduces further, we can produce a proof equating it

with its contractum using join, and compose the

proofs using trans.

The primitive join proof term provides a precise

mechanism for controlling the number of steps used

6In principle, the evaluator should also keep a trace of

rewrites used, so that a proper proof term with the required

convs can be reconstructed, although the current implemen-

tation simply trusts the instrumented evaluator.

to reduce a term, which also serves as an upper bound

on the number of reduction steps, ensuring that type

checking join will terminate. On the other hand,

it’s not clear how to count reduction steps when us-

ing rewriting, as a single rewrite may simulate some

arbitrary (but finite) number of reduction steps. As

a practical matter we simply set the upper bound of

steps for morejoin to some arbitrary large constant;

this has been sufficient in practice. On the other

hand, the current implementation does not provide

any accounting for number of rewrites. Given a poor

choice of rewrite rules (for example, anything with a

refl proof), rewriting may not terminate.

6.2 Example: Append is associative

Figures 12-15 show an example proof of associa-

tivity of append for lists using the prototype Sep3

implementation. The proofs liberally use morejoin

to automatically insert conversions and termination

casts when constructing equalities, rather than using

the more verbose join.

These examples use additional notation from the

Sep3 implementation to introduce top-level defini-

tions. The Recursive form used by append elab-

orates to a rec construct directly. The body of the

rec includes nested lambda-abstractions for each ad-

ditional parameter to the Recursive definition.

The Inductive notation used with append_term is

somewhat more complicated. In the example, we are

performing on induction on the argument xs. How-

ever, the type of xs refers to the argument a. In the

Inductive notation, the definition will elaborate to

a core language term where all of the arguments pre-

ceeding the inductive argument will be introduced

by lambda abstractions. The inductive argument is

indicated by being followed by a name, in braces,

that represents a proof that the inductive argument

terminates. This inductive argument (and the ter-

mination argument) will be introduced with a core

language ind form. All following arguments will be

bound by lambda-abstractions in the body. In the

append_term example, the proof term will desugar

to the following.

\(a:Type ) =>

ind (xs:List a) [xs_term ] .

\(ys:List ) => \( ys_term:ys !) => ...

The proof of associativity is by induction on the

structure of the list argument. Because lists are pro-

grams, it is necessary to provide proofs that the ar-
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data List : [a:Type ] -> Type where

Nil : List a

| Cons : (x:a) -> (xs:List a) -> List a

Recursive append :

[b:Type ] (xs:List b) (ys:List b) -> List b :=

case xs {xs_eq} of

Nil -> ys

| Cons x xs ’ -> Cons [b] x (append [b] xs ’ ys)

?!12 List Append

Inductive append_assoc_term :

forall (a:Type ) (xs:List a){ xs_term }

(ys:List a)( ys_term :ys !)( zs:List a)( zs_term :zs!) .

append [a] xs (append [a] ys zs) =

append [a] (append [a] xs ys) zs :=

let term_xs_ys = append_term [a] xs xs_term ys ys_term;

term_ys_zs = append_term [a] ys ys_term zs zs_term

in case xs {xs_eq} xs_term of

Nil ->

let u1 = morejoin {sym xs_eq , ys_term , xs_term}

: ys = append [a] xs ys;

u2 = morejoin {sym xs_eq , xs_term}

: append [a] xs (tcast (append [a] ys zs) by term_ys_zs )

= append [a] ys zs;

u3 = morejoin {sym xs_eq , xs_term , ys_term}

: ys = append [a] xs ys

in conv u2 at append [a] xs (append [a] ys zs) = append [a] ~u3 zs

| Cons x xs ’ ->

let unroll_app = morejoin {sym xs_eq ,xs_term , term_ys_zs }

: append [a] xs (append [a] ys zs)

= Cons [a] x (append [a] xs ’ (append [a] ys zs ));

ih = append_assoc_term [a] xs ’ (ord xs_eq) ys ys_term zs zs_term ;

u1 = conv unroll_app at

append [a] xs (append [a] ys zs) = Cons [a] x ~ih;

u2 = morejoin {sym xs_eq , xs_term , ys_term}

: append [a] xs ys = Cons [a] x (append [a] xs ’ ys);

term_xs ’_ys = append_term [a] xs ’ (value xs ’) ys ys_term;

u3 = morejoin {sym xs_eq , xs_term , ys_term}

: (append [a] (append [a] xs ys) zs)

= (append [a] (Cons [a] x (append [a] xs ’ ys)) zs);

u4 = morejoin {zs_term , ys_term , value x, term_xs ’_ys}

: append [a] (Cons [a] x (append [a] xs ’ ys)) zs

= Cons [a] x (append [a] (append [a] xs ’ ys) zs);

u5 = trans u3 u4

: append [a] (append [a] xs ys) zs

= Cons [a] x (append [a] (append [a] xs ’ ys) zs)

in conv u1 at append [a] xs (append [a] ys zs) = ~(sym u5)

?!13 Associativity of List Append



Inductive append_term :

forall(a:Type )(xs:List a){ xs_term }(ys:List a)( ys_term:ys!).

(append [a] xs ys)! :=

case xs {xs_eq} xs_term of

Nil -> let u1 = morejoin {sym xs_eq , xs_term , ys_term} : append [a] xs ys = ys

in conv ys_term at ~( sym u1) !

| Cons x xs ’ ->

let ih = append_term [a] xs ’ (ord xs_eq : xs ’ < xs) ys ys_term;

x_term = value x : x!;

unroll_app = morejoin {sym xs_eq ,xs_term ,ys_term }

: append [a] xs ys = Cons [a] x (append [a] xs ’ ys);

u1 = value (Cons [a] ~x_term ~ih)

in conv u1 at ~( sym unroll_app ) !

?!14 Proof that append terminates on terminating inputs

Theorem append_assoc :

forall (a:Type ) (xs:List a)( ys:List a)(zs:List a).

append [a] xs (append [a] ys zs) =

append [a] (append [a] xs ys) zs :=

termcase xs {xs_term } of

abort ->

let aleft = join 100 :

(append [a] (abort (List a)) (append [a] ys zs )) = (abort (List a));

aright = join 100 :

(abort (List a)) = (append [a] (append [a] (abort (List a)) ys) zs);

u1 = trans aleft aright

in conv u1 at

append [a] ~xs_term (append [a] ys zs) =

append [a] (append [a] ~xs_term ys) zs

| ! ->

termcase ys {ys_term } of

abort ->

let aleft = morejoin {xs_term } :

(append [a] xs (append [a] (abort (List a)) zs)) =

(abort (List a)) ;

aright = morejoin {xs_term } :

(abort (List a)) =

(append [a] (append [a] xs (abort (List a))) zs);

u1 = trans aleft aright

in conv u1 at

append [a] xs (append [a] ~ys_term zs) =

append [a] (append [a] xs ~ys_term ) zs

| ! ->

termcase zs {zs_term} of

abort ->

let aleft = morejoin {xs_term ,ys_term } :

(append [a] xs (append [a] ys (abort (List a)))) =

abort (List a);

a_x_y_term = append_term a xs xs_term ys ys_term ;

aright = morejoin {xs_term ,ys_term ,a_x_y_term } :

(abort (List a)) =

(append [a] (append [a] xs ys) (abort (List a)));

u1 = trans aleft aright

in conv u1 at

append [a] xs (append [a] ys ~zs_term) =

append [a] (append [a] xs ys) ~zs_term

| ! -> append_assoc_term [a] xs xs_term ys ys_term zs zs_term

?!15 Generalizing associativity of list append to non-terminating arguments.



Progress in Informatics No. (.)

guments to append terminate. The weak form of the

theorem is shown in Figure 13. The proof proceeds

by induction on xs, so it requires a proof that xs is

terminating.

In the syntax of Sep3, the presence of curly braces

and lack of type ascription for the parameter xs_term

indicates that the preceding argument xs is the in-

duction variable. When applying append_assoc_term

from outside the proof, the argument in xs_term po-

sition should be a proof of xs!. However, when we

appeal to the induction hypothesis for a subterm xs’

of xs within the body of append_assoc_term, we

supply a proof that xs’ < xs, as shown in the ih

binding in the proof.

Within the body of the proof, we prove equalities

involving the variables ys and zs. These variables

are introduced by a proof abstraction, so they range

over expressions. It is necessary to use termination

casts, inserted by morejoin using the supplied ter-

mination proofs, to reduce programs involving these

variables.

The proof uses an additional lemma (Figure 14)

that proves append total on terminating inputs. This

is a convenience, to simplify presentation, and could

be avoided with additional reasoning using termcase.

For more complex functions, where the proof of to-

tality is not so straightforward, using termcase may

be preferable.

Because the programs xs, ys, and zs are all used

in strict positions on both sides of the equality, the

formula can be strengthened to an equality over all

programs producing lists, regardless of whether they

terminate. Figure 15 shows the generalization of the

proof of associativity of append to potentially non-

terminating arguments.

The proof uses termcase to consider the termi-

nation behavior of each argument in turn. In each

abort branch, the EAbort rule allows us to join an

application of append to the diverging argument with

abort, demonstrating that both sides of the associa-

tivity formula join with abort. In the final termi-

nates branch, the context contains proofs xs_term,

ys_term, and zs_term that prove the associated ar-

guments are terminating. With these proofs avail-

able, the weaker append_assoc_term lemma can be

invoked.

7 Example: Combinators

The append_assoc example of the previous section

provides a small flavor of proving system properties

within Sep3. While the proof does not rely on the

append function terminating, it is easy to prove this

inductively. Examples of programs that we cannot

prove total yet we wish to perform external verifica-

tion upon abound.

Below, we describe the Sep3 solution to a problem

posed as part of the 2012 VSTTE verified software

competition. The problem involves proofs of proper-

ties of an interpreter for a SK combinator language.

Because the SK calculus is Turing complete, any in-

terpreter of terms over this language will necessarily

be partial.

Following the VSTTE competition, a number of

participants made their submitted solutions avail-

able. Two particular solutions [8, 27] were devel-

oped in verification environments based on normaliz-

ing programs. In the description of the Sep3 solution

below, we use these solutions as points of compari-

son to the Sep3 approach, where we support external

verification of non-terminating functions.

7.1 Problem definition

The description for the SK combinator problem is

available from the VSTTE 2012 program verification

competition website7. In the interests of making the

description of the Sep3 solution self-contained, we

reproduce parts of the problem as necessary.

The SK combinator calculus consists of a simple

term language defined as follows:

t := S | K | t t,

where terms are made up of constants S and K, along

with left-associative application. Values v are a sub-

set of the language defined by the grammar:

v := K | S | K v | S v | S v v

Reduction is call-by-value. Terms can be decom-

posed to an evaluation context, given by the gram-

mar:

C = � | C t | v C.

The operation C[t] produces a term by substitut-

ing � with t in the evaluation context C. It is defined

by the following set of equations:

7https://sites.google.com/site/vstte2012/compet



�[t] = t

(v C)[t] = v C[t]

(C t)[t’] = C[t’] t

Finally, we have a single-step reduction relation

defined as follows:

C[K t1 t2] → C[t1]

C[S t1 t2 t3] → C[(t1 t2) (t1 t3)]
.

We call the transitive-reflexive closure →∗ of → the

reduction relation. Finally, for a term t, if there does

not exist a term t’ such that t → t’, then we write

t 6→.

The programming task is to define a function

reduction that takes a term and returns a term t’

such that t→∗t’ and t’ 6→. If there does not exist

such a t’, then reduction diverges. The verification

problem consists of three parts. In the first, we are

required to prove reduction correctly implements

its specification. In the second, we are to show that

reduction on a term containing no S subterms always

terminates. The third requires us to demonstrate a

property of the reduction of the terms consisting of

left-recursive nested applications of K.

In the remainder of this section, we will focus on

the solution to the programming task and the ver-

ification of the second problem, as these serve to

demonstrate the ability to perform external verifi-

cation over potentially non-terminating programs in

Sep3.

7.2 Sep3 solution

We begin by defining a datatype for terms, corre-

sponding to the term grammar.

data Term : Type where

S : Term

| K : Term

| App : Term -> Term -> Term

Moreover, we define a program isValue, defined

over terms. In normalizing dependent type theories,

a common practice when defining a predicate is to de-

fine an inductive proposition representing the pred-

icate. In Sep3, we cannot do this directly, as data

types are exclusively programmatic, and may be in-

habited by diverging programs. Therefore, a logical

interpretation of an element of an inductive type is

not valid. In Sep3, we define the isValue function

directly as a recursive function over terms, returning

a Bool.

The definition of isValue, along with a proof of

termination (on terminating input) for isValue, is

Program isRedex : (t:Term ) -> Bool :=

case t {t_eq } of

K -> False

| S -> False

| App f1 t1 ->

case f1 {f2_eq} of

K -> False

| S -> False

| App f2 t2 ->

case f2 {f2_eq} of

K -> isValue t1 && isValue t2

| S -> False

| App f2 t3 ->

case f2 {f2_eq} of

K -> False

| S -> isValue t1 &&

isValue t2 &&

isValue t3

| App f3 t4 -> False

Inductive isRedex_terminates :

forall (t:Term ){ t_term }.

isRedex t ! := <omitted >

?!17 isRedex

given in Figure 16. The proof of isValue_term closely

mirrors the structure of the program isValue. This

is to be expected, as the proof largely follows from

equations constructed with join. A more sophisti-

cated surface language may be able to derive such

termination proofs for a subclass of recursive func-

tions using syntactic methods such as those employed

in tools like Coq and Agda.

Similarly to the definition of isValue, we define a

recursive function isRedex (Figure 17) which returns

a Bool. This function is used to determine if a term

is a reducible expression. As with isValue, we can

prove by induction that isRedex terminates on all

terminating inputs, although we elide the proof.

The formulation of the small-step reduction rela-

tion in the problem description is expressed in terms

of evaluation contexts. Rather than implement this

directly, we instead define a function step only on

redexes instead of all reducible terms. We then de-

fine a function decompose for identifying a redex and

evaluation context of a term, as well as a function

plug performing the substitution of a term for � in

an evaluation context.

The step function is defined only on redexes, so it

takes a proof p:isRedex t = True. The signature

for step is

Program step :

(t:Term )[p:isRedex t = True ] -> Term
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-- Recursive value predicate

Recursive isValue : (t:Term ) -> Bool :=

case t {t_eq } of

K -> True

|S -> True

|App l r -> (case l {l_eq } of

K -> isValue r

| S -> isValue r

| App l’ r’ -> (case l’ {l’_eq} of

S -> isValue r’ && isValue r

| K -> False

| App a b -> False))

-- isValue terminates on terminating terms.

-- Note that this pretty much duplicates the code from isValue .

Inductive isValue_term : forall (t:Term ){ t_term }. isValue t ! :=

case t {t_eq } t_term of

K -> let u1 = morejoin {t_term , sym t_eq }

: True = isValue t

in conv valax True at ~u1 !

|S -> let u1 = morejoin {t_term , sym t_eq }

: True = isValue t

in conv valax True at ~u1 !

| App l r ->

case l {l_eq } (valax l) of

K ->

let u1 = isValue_term r (ord t_eq )

: isValue r !;

u2 = morejoin {sym t_eq , sym l_eq , t_term , valax r}

: isValue r = isValue t

in conv u1 at ~u2 !

|S -> let u1 = isValue_term r (ord t_eq )

: isValue r !;

u2 = morejoin {sym t_eq , sym l_eq , t_term , valax r}

: isValue r = isValue t

in conv u1 at ~u2 !

|App l’ r’ ->

case l’ {l’_eq} valax l’ of

S ->

let ih_r = isValue_term r (ord t_eq : r < t);

ih_r ’ = isValue_term r’

(ordtrans (ord l_eq : r’ < l) (ord t_eq : l < t));

u1 = and_term (isValue r’) (isValue r) ih_r ’ ih_r ;

u2 = morejoin {sym t_eq ,sym l_eq ,sym l’_eq , t_term , valax l,valax l’}

: (( isValue r’ && isValue r) = isValue t)

in conv u1 at ~u2 !

| K ->

let u1 = morejoin {sym t_eq ,sym l_eq ,sym l’_eq ,t_term ,valax l,valax l’}

: False = isValue t

in conv valax False at ~u1 !

| App a b ->

let u1 = morejoin {sym t_eq ,sym l_eq ,sym l’_eq ,t_term ,valax l,valax l’}

: False = isValue t

in conv valax False at ~u1 !

?!16 isValue



Although the step function is parameterized over

all terms, the precondition isRedex t = True iden-

tifies a subset of those terms which actually are re-

dexes – that is, they have the forms

App (App K t1) t2 or

App (App (App (S t1) t2) t3) for some terms t1,

t2, and t3 for which isValue returns True.

Case-splitting on any term that is not of this form

will yield a contradiction, as we will be able to prove

that isRedex t = False. To prove this contradic-

tion directly in the definition of step requires us

to effectively inline the definition of isRedex in the

body of step. Branches where isRedex t = False

can be proved are unreachable, yet we would still

have to return some result, for example abort or

some designated Term. Whatever the choice, it may

not be immediately obvious to a programmer reading

the code that the case branch is unreachable.

Our solution to unreachable case branches draws

from experience with normalizing type theories that

include inductive propositions. We define a program-

matic type RedexProp t representing the inductive

proposition that a term is a redex. Moreover, the

data constructors for RedexProp carry exactly the

information about the shape of the index term t nec-

essary for defining the step function.

data RedexProp : (t:Term ) -> Type where

RedexK : (t1:Term) -> (t2:Term ) ->

[p:t = App (App K t1) t2] ->

[p1:isValue t1 = True ] ->

[p2:isValue t2 = True ] ->

RedexProp t

|RedexS :

(t1:Term ) -> (t2:Term ) -> (t3:Term ) ->

[p:t = App (App (App S t1) t2) t3] ->

[p1: isValue t1 = True ] ->

[p2: isValue t2 = True ] ->

[p3: isValue t3 = True ] ->

RedexProp t

Given a proof p:isRedex t = True, we can de-

fine a recursive program redexProp that constructs

a term of type RedexProp t. Moreover, we can prove

that redexProp is total on all inputs. In effect, the

combination of the redexProp and redexPropTerm

allow us to migrate programmatic data to the proof

language. We can soundly case-split on a RedexProp

resulting from a terminating application of redexProp

in the proof language if we know that the RedexProp

is a value.

A portion of the definitions of redexProp and

redexPropTerm are shown in Figure 18. Note that in

the definition of redexProp, we return abort when

a pattern match leads to a contradiction. The as-

sociated termination proof makes this contradiction

apparent, using the contra primitive.

The definition of step, in turn, never directly de-

composes the input term t, but rather first con-

structs a RedexProp proposition and then case splits

on it. The associated step_terminates theorem

shows that step is total, directly appealing to the

redexPropTerm lemma rather than by inductively

reasoning on the input term t.

Program step :

(t:Term )[p:isRedex t = True ] -> Term :=

case redexProp t [p] {redex_eq } of

RedexK t1 t2

[isapp] [isval1] [isval2] -> t1

| RedexS t1 t2 t3

[isapp] [isval1] [isval2] [isval3]

-> App (App t1 t2) (App t1 t3)

Theorem step_terminates :

forall (t:Term )(p:isRedex t = True ).

step t [p] !

The step function operates on redexes, but the

small-step reduction relation is defined over reducible

terms, including those containing a redex in a sub-

term. The Ctx type captures evaluation contexts and

is defined by the following inductive data type.

data Ctx : Type where

Box : Ctx

| C1 : Ctx -> Term -> Ctx

| C2 : (t:Term ) -> [p:isValue t = True ]

-> Ctx -> Ctx

We relate terms to evaluation contexts by way of

the decompose and plug functions (Figure 19). Since

decompose must return a pair of Ctx and Term, we

define a type Decomp to represent this pair.

The machinery for performing reduction is now in

place – step relates a redex with its contractum.

Using decompose separates a term into an evalua-

tion context and possible redex. Composing step

with decompose, followed by plug with the evalua-

tion context and the contractum, gives us the small-

step reduction relation→. Finally, recursively reduc-

ing the resulting term yields the transitive-reflexive

closure of the small-step reduction relation. The

reduction function, shown below, captures this pro-

cess.

Recursive reduction :

(t:Term ) -> Term :=

case decompose t {dec_t} of

Dec c t’ ->
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Program redexProp : (t:Term )[p:isRedex t = True ] -> RedexProp t :=

case t {t_eq } of

K -> abort ( RedexProp t) -- Contradiction , since isRedex t = True

| S -> abort ( RedexProp t) -- Contradiction , since isRedex t = True

| App f1 t1 ->

case f1 {f1_eq} of

K -> abort (RedexProp t) -- Contradiction , since isRedex t = True

| S -> abort (RedexProp t) -- Contradiction , since isRedex t = True

| App f2 t2 ->

case f2 {f2_eq} of

K -> let [u1] = (conv sym t_eq at t = App ~(sym f1_eq) t1)

: t = App (App f2 t2) t1;

[u2] = (conv u1 at t = App (App ~( sym f2_eq) t2) t1)

: t = App (App K t2) t1;

[u3] = morejoin { u2 , valax t2 , valax t1}

: isRedex t = (isValue t1 && isValue t2);

[u4] = trans (sym p) u3

: True = (isValue t1 && isValue t2)

in RedexK t t2 t1 [u2]

[and_right (isValue t1) (isValue t2) (sym u4)]

[and_left (isValue t1) (isValue t2) (sym u4)]

| S -> abort (RedexProp t) -- Contradiction , as isRedex t = True

| App f3 t3 -> ...

Theorem redexPropTerm :

forall(t:Term )(p:isRedex t = True ). redexProp t [p] ! :=

termcase t {t_term} of

abort ->

let isredex_t_aborts = aborts (isRedex ~t_term)

: (( abort Bool ) = ( isRedex t));

isredex_t_terminates = (conv valax True at ~( sym p) !)

: (isRedex t) !

in contraabort isredex_t_aborts isredex_t_terminates

| ! ->

case t {t_eq } t_term of

K -> let u1 = morejoin {t_term ,sym t_eq } : False = isRedex t

in contra (equiv 3 : False = True )

| S -> ...

| App f1 t1 -> ...

?!18 Redex Inductive Proposition



data Decomp : Type where

Dec : (c:Ctx) -> (t:Term ) -> Decomp

Recursive decompose :

(t:Term ) -> Decomp :=

case isRedex t {redex_t } of

True -> Dec Box t

| False ->

case t {e_eq } of

K -> Dec Box t

| S -> Dec Box t

| App x y ->

case isValue x {x_val} of

True ->

(case decompose y {y_eq } of

Dec c’ t’ ->

Dec (C2 x [sym x_val] c’) t’)

| False ->

(case decompose x {x_eq } of

Dec c’ t’ ->

Dec (C1 c’ y) t’)

Recursive plug :

(c:Ctx)(t:Term) -> Term :=

case c {c_eq } of

Box -> t

| C1 c’ t’ -> App (plug c’ t) t’

| C2 v [pf] c’ -> App v (plug c’ t)

?!19 Decomposition and Context Plugging

case isRedex t’ {red_t ’} of

True ->

reduction

(plug c (step t’ [sym red_t ’]))

|False -> plug c t’

The definition of the reduction function follows

the definition of the reduction relation →∗ faithfully.

The primary deviation is the use of the decompose

function to identify an evaluation context and possi-

ble redex; a relationship between terms and evalua-

tion contexts that is left implicit in the specification

of the plug function. Indeed, as part of the devel-

opment of reduction, we proved the connection be-

tween decompose and plug:

Inductive plug_decompose_inv :

forall (t:Term )( t_term:t!)

(t’: Term )(t’_term:t’!)

(c:Ctx ){ c_term}

(p:decompose t = Dec c t ’).

plug c t’ = t

Discussion The reduction function is intention-

ally defined to match the specification of the reduc-

tion relation. However, this particular implementa-

tion decision has its drawbacks, particularly in ef-

ficiency. In each small-step reduction, a term is de-

composed to an evaluation context and redex, the re-

dex is contracted, and then the contractum plugged

back into the evaluation context. In the transitive

closure of this implementation of the small-step re-

duction relation, the reduction will repeatedly plug

a contractum into an evaluation context and then

immediately in the recursive call decompose the re-

sult, undoing the work of the plug function. A more

efficient implementation may eliminate this overhead

by continuing reduction immediately upon producing

a new redex when plugging the contractum into the

context.

Unfortunately, the resulting reduction function

differs substantially from the specification of the re-

duction relation, because it interleaves the plug func-

tion with reduction, effectively defining a large-step

reduction semantics. This in turn requires additional

verification effort to prove that such a large-step in-

terpreter simulates the small-step interpreter.

It is illustrative to compare the Sep3 definition

to solutions in other verification environments, gra-

ciously posted online following the competition [8,

27]. We examine two top-scoring solutions imple-

mented using ACL2 [13] and PVS [26]. Both ACL2

and PVS are language-based verification tools based

on a logic of total functions. In particular, we see

that the handling of non-termination is central to

the definition of the reduction function.

The PVS solution defines a terminating reduce

function implementing large-step reduction, which is

later proven to simulate the small-step reduction re-

lation. This function can be proved terminating in

PVS by a measure function defined on the structure

of the input term, much in the same way as the Sep3

_ < _ formula is used in inductive proofs.

More interesting is the definition of the reduction

function implementing the transitive reflexive clo-

sure of small-step reduction. First, iter_reduce – a

bounded definition of reduction – is defined to take,

in addition to a term to reduce, a maximum bound

on the number of reduction steps required to yield a

value. Next, reduction is defined by appealing to an

oracle supplying an appropriate number of reduction

steps.

iter_reduce (n)(R): RECURSIVE term =

(IF n = 0

THEN R

ELSE

(LET Q = reduce(R)

IN IF R = Q

THEN R
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ELSE iter_reduce (n - 1)(Q)

ENDIF)

ENDIF)

MEASURE n

reducible ?(R): bool =

(EXISTS n: value?( iter_reduce (n)(R)))

reduction (R: (reducible ?)): (value?)

= iter_reduce (choose! n:

value?( iter_reduce (n)(R)))(R)

This solution uses a predicate subtype reducible?

to ensure that iter_reduce is only defined on nor-

malizing terms – those for which there exists an ap-

propriate finite number of reduction steps to yield a

value, so reduction is not defined on all combinator

terms.

Sep3 provides a similar oracle by virtue of the

termcase construct, yet this is purely a proof lan-

guage construct. Because proofs are erased from pro-

grams prior to execution, there is no need to imple-

ment such an oracle.

The ACL2 solution uses a similar approach, utiliz-

ing a steps-required oracle to generate a bound n

on the number of steps required to produce a value

term. As commentary on the solution describes, this

introduces an axiom that steps-required always re-

turns some value, but doesn’t indicate how to calcu-

late that value. That is, some entity from ACL2’s

untyped universe is returned, but it is not possible

to reason about this entity in the ACL2 universe.

(defchoose steps -required (n) (x)

(b* (((mv terminates &)

(reduce -n n x)))

terminates ))

Next, the reduction function is defined. In con-

trast to the PVS solution, this definition is sepa-

rated into two parts – a logical specification that

uses the steps-required oracle and an executable

definition that simply recursively invokes the termi-

nating small-step reduction function. The definition

furthermore asserts that the specification and the im-

plementation are equal. The separation between log-

ical specification and executable implementation is

similar to the proof/program separation in Sep3.

The comparison between the Sep3 implementation

to the PVS and ACL2 solutions is intended to high-

light the differences between language-based verifica-

tion in a logic of total functions from Sep3, which in-

ternalizes the notion of termination within the logic.

This allows the language to relax the constraint that

all programs terminate. ACL2 and PVS are both

mature logics and tools, and the above is not in-

tended to be an exhaustive comparison with Sep3.

7.3 Reasoning about reduction

One of the verification exercises for the combinator

problem involves proving termination of combinator

terms which do not contain any S subterms. Intu-

itively, this is because any redexes in such a term will

always produce a smaller term.

The s_free predicate is defined recursively on the

structure of the input term t.

Recursive s_free : (t:Term ) -> Bool :=

case t {t_eq } of

K -> True

| S -> False

| App t1 t2 -> s_free t1 && s_free t2

The main theorem is proved by induction on the

structure of the term t. We outline a sketch of the

proof below. The internalized termination formula

allows us to express the theorem (reduction t)! di-

rectly.

Inductive s_free_term :

forall (t:Term ){ t_term}

(p:s_free t = True ).( reduction t) !

The proof again follows the structure of the

reduction function. We had to prove two main lem-

mas that the decomp and plug functions preserve

s_free of their results.

Inductive decomp_preserves_s_free :

forall(t:Term ){ t_term}

(t’: Term )(t’_term:t ’!)

(c:Ctx)( c_term:c!)

(p:s_free t = True )

(q:decompose t = Dec c t’).

(s_free t’ = True ) :=

<omitted >

Inductive plug_preserves_s_free :

forall (t:Term )( t_term:t!)

(t’: Term )(t’_term:t’!)

(c:Ctx){ c_term}

(t’’:Term )(t’’_term:t’’!)

(p:decompose t = Dec c t’)

(q1:s_free t = True )

(q2:s_free t’’ = True ).

(s_free (plug c t’’) = True ) :=

<omitted >

A s_free redex will always produce a smaller term

– taking K t1 t2 to t1. However, the small-step

reduction relation is phrased in terms of evaluation

contexts. Using plug the contractum is plugged into

the evaluation context, which obscures the decrease

in size. Consequently, we are required to prove a



theorem plug_preserves_ord that expresses the de-

crease in size of the term using the _ < _ formula.

Inductive plug_preserves_ord :

forall(t1:Term )( t1_term :t1 !)

(t2:Term )( t2_term :t2 !)

(p:t1 < t2)(c:Ctx){ c_term }.

plug c t1 < plug c t2 := <omitted >

The remainder of the proof is directly reasoning

using computation and application of the inductive

hypothesis.

8 Related Work

It is surprising that relatively few works and sys-

tems are concerned with external reasoning for call-

by-value, general-recursive higher-order functional pro-

grams. Indeed, we are aware of no prior theorem

proving systems which exactly address this very nat-

ural problem! NuPRL might be the closest, since it

supports external reasoning about higher-order func-

tional programs with general recursion, but it ap-

pears that the semantics is lazy rather than call-by-

value [7]. The logics of theorem provers like Coq

and Isabelle require all functions to be terminat-

ing, and then need not (and do not) include a par-

ticular reduction strategy as part of their seman-

tics [24, 34]. ACL2 also requires totality of func-

tions [19]. As mentioned above, there are methods

for defining and reasoning about general-recursive

functions, but these require a non-trivial encoding,

for example, using co-inductive data types, domain

predicates, or domain theory [15, 16, 5, 18]. Sys-

tems or theories for direct reasoning about general-

recursive functions seem to be less widely used or

known. LTC supports explicit reasoning about total-

ity, conversion, and typing for (untyped) PCF pro-

grams (for a recent work on LTC, see [4]). Equality

is based on conversion, rather than reduction, and

hence no reduction strategy is privileged in the ax-

iomatization of the theory. VeriFun supports reason-

ing about general-recursive, possibly undefined func-

tions [35]. The language of VeriFun does have call-

by-value semantics and polymorphic types, but only

first-order functions. Feferman’s System W is a log-

ical theory intended for the formalization of math-

ematics [9, Chapter 13]. Its language for function

definition uses a (generally non-computable) search

operator in place of general recursion, and its theory,

like LTC, is based on conversion rather than reduc-

tion. The CFML tool automatically extracts a for-

mula from an OCaml program that can be used for

verification in Coq. It’s used for external verification

only, and not for a dependently-typed language [6].

On the semantic side, several recent works are con-

cerned with axiomatizing fixed-point operators (in-

cluding call-by-value ones) that arise in various cat-

egorical structures [11, 31]. These works are focused

on foundations, and propose general axioms applica-

ble to a wide range of specific structures, including

models of call-by-value computation with effects. In

contrast, our interest is in applied reasoning in a spe-

cific pure call-by-value functional language. A ma-

jor technical difference is that the notion of equality

we have adopted here is not extensional, and hence

would not (it seems) be able to validate the axioms

proposed by, say, Haswegawa and Kakutani, which

are expressed as equalities between denotationally

equivalent higher-order terms [11].

The Ynot system, based on Hoare Type Theory, is

a generalization of Hoare Logic to higher-order func-

tional programs with general recursion, state, and

call-by-value semantics [23, 22]. Thus, Ynot pro-

vides an internal verification solution to the problem

of interest in this paper, and indeed to the further

difficult matter of reasoning about state. But, to our

knowledge, Ynot is not intended for external reason-

ing about programs; rather, it uses a monad indexed

by pre- and post-conditions on the imperative state

in order to perform internal verification of programs.

Previous work of Stump and co-authors on Guru has

similar goals as Sep3, with a similar language design

separating proofs and programs, and using termina-

tion casts with a judgmental notion of value [32, 33].

But in those works, quantifiers range only over val-

ues, rather than arbitrary programs; there is no con-

struct for termination case; and the issue of call-by-

value β-reduction is not addressed. Indeed, the Guru

implementation unsoundly allows β-reduction with

non-value arguments8.

Somewhat less closely related are works based on

the Edinburgh Logical Framework (LF) (also known

as the λΠ type theory) [10]. Systems like Beluga

and Delphin add the ability to write functional pro-

grams operating over datatypes described in LF [29,

30]. Like the type theories mentioned above, these

systems support terminating recursion over indexed

8This issue with the Guru implementation, discovered in

the course of the current research on Sep3, remains to be re-

paired.
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datatypes. Since these datatypes are expressed in

LF, however, they may use higher-order abstract syn-

tax to encode object-level binders using λ-abstraction

in LF. On the other hand, the main application of

these systems so far is to formalized meta-theory

of languages with binders. They are not concerned

with proving properties about general recursive func-

tions under call-by-value reduction semantics. The

Twelf tool does allow one to define terminating as

well as general-recursive functions over datatypes de-

fined in LF, in this sense providing features simi-

lar to those we are aiming at in Trellys [28]. Un-

like Beluga and Delphin (and Trellys), Twelf uses

the logic-programming paradigm for expressing such

functions, thus imposing an additional conceptual

burden on programmers unfamiliar with logic pro-

gramming. Furthermore, to date no theory has been

worked out for extending Twelf with a number of

constructs standardly found in Type Theory (e.g.,

polymorphism and large eliminations).

9 Conclusion

Trellys is a research project investigating the de-

sign of a dependently typed programming language

with call-by-value semantics and general recursion.

Sep3 is a core language design for Trellys, and occu-

pies, to the best of our knowledge, a unique position

in the language design space. Sep3 supports inter-

nal and external verification, while not requiring a

programmer to resort to indirect encodings to im-

plement general recursive functions.

Sep3 uses a syntactic distinction between the proof

and programming languages to isolate non-termination

in the programming language from the proof lan-

guage. Despite the syntactic distinction proofs can

mention possibly diverging programs without inher-

iting their divergence, a capability dubbed “Freedom

of Speech”.

Reasoning about programs with general recursion

in a dependently typed language requires a num-

ber of modifications to the logic to ensure sound-

ness while maintaining expressiveness. Variables can

range, depending on context, over values or expres-

sions, so Sep3 includes a value judgment to differen-

tiate the two. Equality proofs are constructed by

reducing open programs, so termination casts are

added to allow the programming language to soundly

extend call-by-value reduction over non syntactic val-

ues. Many theorems are valid regardless of the termi-

nation behavior of the programs the theorems quan-

tify over, so a termination case expression allows us

to express those theorems, and furthermore allows us

to reason about possibly diverging programs without

proving termination.

Trellys remains a work in progress, and Sep3 repre-

sents one attempt at defining a core language to sup-

port the desired goal of combining dependent types

and a call-by-value language including general recur-

sion. While the principal language design includes

the concepts presented here as well as many other

features, much work remains, most importantly the

analysis of the meta-theoretical properties of the lan-

guage design. Sep3 depends on a syntactic separa-

tion between the proof and programming fragments

of the language. The Trellys team continues investi-

gation into methods to remove this syntactic distinc-

tion, including an internalized type representing the

proof/program classification of a term. This allows

terms to safely be migrated from the proof language

to the programming language, and vice-versa.
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[6] Arthur Charguéraud. Program Verification
through Characteristic Formulae. In Proceedings
of the 15th ACM SIGPLAN International Confer-
ence on Functional programming, ICFP ’10, pages



321–332, New York, NY, USA, 2010. ACM.
[7] Robert Constable and the PRL group. Implement-

ing mathematics with the Nuprl proof development
system. Prentice-Hall, 1986.

[8] Jared Davis, Matt Kaufmann, J Strother
Moore, and Sol Swords. ACL2 Solu-
tion to VSTTE 2012 Problem 2. Website.
http://www.cs.utexas.edu/users/moore/acl2/

vstte-2012/acl2-dkms/problem2/.
[9] Solomon Feferman. In the Light of Logic. Oxford

University Press, 1998.
[10] Robert Harper, Furio Honsell, and Gordon

Plotkin. A Framework for Defining Logics. Jour-
nal of the Association for Computing Machinery,
40(1):143–184, January 1993.

[11] Masahito Hasegawa and Yoshihiko Kakutani. Ax-
ioms for Recursion in Call-by-Value. Higher Or-
der Symbol. Comput., 15(2-3):235–264, September
2002.

[12] Chung Kil Hur, 2010. Message on the
Agda mailing list, https://lists.chalmers.se/

pipermail/agda/2010/001526.html.
[13] Matt Kaufmann, Panagiotis Manolios, and

J Strother Moore. Computer-aided Reasoning: An
Approach. Springer Netherlands, 2000.

[14] Garrin Kimmell, Aaron Stump, Harley D. Eades
III, Peng Fu, Tim Sheard, Stephanie Weirich,
Chris Casinghino, Vilhelm Sjöberg, Nathan
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Description: Twelf — A Meta-Logical Framework
for Deductive Systems. In 16th International Con-
ference on Automated Deduction, 1999.

[29] Brigitte Pientka and Joshua Dunfield. Beluga:
A Framework for Programming and Reasoning
with Deductive Systems (System Description). In
Jürgen Giesl and Reiner Hähnle, editors, Auto-
mated Reasoning, 5th International Joint Confer-
ence, IJCAR 2010, Edinburgh, UK, July 16-19,
2010. Proceedings, pages 15–21, 2010.

[30] Adam Poswolsky and Carsten Schürmann. System
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