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Abstract

Existing meta-programming languages operate on encodings of pro-
grams as data. This paper presents a new meta-programming language,
based on an untyped lambda calculus, in which structurally reflective pro-
gramming is supported directly, without any encoding. The language fea-
tures call-by-value and call-by-name lambda abstractions, as well as novel
reflective features enabling the intensional manipulation of arbitrary pro-
gram terms. The language is scope safe, in the sense that variables can
neither be captured nor escape their scopes. The expressiveness of the
language is demonstrated by showing how to implement quotation and
evaluation operations, as proposed by Wand. The language’s utility for
meta-programming is further demonstrated through additional represen-
tative examples. A prototype implementation is described and evaluated.

Keywords: lambda calculus, reflection, meta-programming, Church en-
coding, Mogensen-Scott encoding, Wand-style fexprs, alpha equivalence,
language implementation.

1 Introduction

This paper presents a new meta-programming language called Archon, in
which programs can operate directly on other programs as data. Existing meta-
programming languages suffer from defects such as encoding programs at too
low a level of abstraction, or in a way that bloats the encoded program terms.
Other issues include the possibility for variables either to be captured or escape
their static scopes. Archon rectifies these defects by trading the complexity
of the reflective encoding for additional programming constructs. We adopt
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the identity function as our encoding, and add new reflective constructs to tra-
verse (unencoded) program terms. These results are achieved in a scope-safe
way: variables may neither be captured by substitution nor escape their scopes.
This work is the crucial first part of the Archon project, which aims to unite
reflective programming and reflective theorem proving.

In order to situate the present work with respect to the existing literature,
we first survey work on several kinds of reflection in Computer Science (Sec-
tion 2). We then further motivate the work by briefly discussing the role of meta-
programming in the Archon project (Section 3). In Sections 4 through 6, we
consider in detail related work by Wand [50]. We will see how Wand’s language
achieves desirable properties which other reflective programming languages lack,
but at the same time fails to be suitable for general meta-programming. This
requires a brief review of the Mogensen-Scott encoding used in Wand’s language
(Section 5). The Archon language itself is presented starting in Section 7. An
outline for the sections of the paper presenting Archon may be found in Sec-
tion 3.3.

2 On Reflection

Abstractly speaking, reflection is concerned with enabling entities at one lin-
guistic level (called the object level) to interact with entities at a higher level
(the meta-level). This is typically done via some kind of encoding of the meta-
level entities in the object language. This abstract description is specialized by
stating what the languages are, what kind of entities are involved, and what
sort of interaction is allowed. A crucial point is how the meta-level entities are
encoded in the object language. The rest of this section categorizes related work
on reflection in Computer Science according to these criteria.

Note that in related work on logical frameworks, object languages (such as
logics) are seen as being embedded in meta-languages (logical frameworks) [33].
This determination of what is object-level and what is meta-level differs from
that of our abstract description of reflection. The difference in viewpoint arises
from a difference in emphasis. Logical frameworks are typically concerned with
representing other deductive systems. In reflection, the emphasis is on the
ability of an object-level language to encode entities from its own meta-level.

2.1 Reflective Programming Languages

In programming languages, the object-level language is a programming lan-
guage, and the entities there are programs. Following Ferber, we may then
informally distinguish structural reflection and computational reflection [9]. In
structural reflection, the meta-level entities are determined in some way by pro-
gram source code, and have a more static character. In computational reflec-
tion, the meta-level entities are constituents of the running program’s execution
environment, and thus are more dynamic. This paper is concerned with meta-
programming, which is a form of structural reflection. We first briefly survey
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other forms of reflective programming.
Much early interest in reflective programming languages centered around

language extension via computational reflection [18, 41]. Control operators such
as Scheme’s call/cc are also computationally reflective, since they expose an
aspect of the program’s execution environment, namely its continuation, to the
program itself. Object-oriented programming languages like Smalltalk and
Java include computationally reflective features, for example the ability, in
Java, of a running program to replace its class loader [1, 13].

Object-oriented programming languages typically also provide certain struc-
turally reflective features, mediated by abstracted representations of classes.
For example, Java’s reflection mechanism makes essentially just the names and
types of object and class components available to running object-level programs.
Interaction is restricted mostly to inspection, although certain simple updating
operations like setting the values of object fields are allowed. Object-oriented
languages like Smalltalk allow much more liberal forms of interaction. Run-
time type information in C++ may be considered another example [43]. Similar
functionality is provided in functional languages by intensional polymorphism,
where code can dispatch at runtime on a term’s type [6].

2.1.1 Meta-Programming

Meta-programming languages are based on a shallow encoding of program texts.
In general, the kind of interaction allowed in meta-programming is to perform
arbitrary computation of output values, including program texts, from input
program texts. Note that this excludes meta-programs from modifying running
code. Self-modifying code can arguably be viewed as both structurally and
computationally reflective, since the running code can be viewed as forming
part of the program’s execution environment.

With meta-programming, object-level programs manipulate encoded pro-
gram texts as data. Languages in the LISP family, such as modern dialects
Common LISP, Emacs LISP, and Scheme, exemplify this kind of reflective
programming [42, 27, 21, 28]. In these languages, it is possible to view any
program as a piece of data, and any piece of data as a program (albeit pos-
sibly one which cannot execute without error, as in trying to call something,
such as a numeric literal, which is not a function). Quotation (quote) encodes
program expressions as data, specifically nested lists of symbols. As lists, pro-
gram expressions such as β-redexes, which would otherwise evaluate, are frozen.
They may be inspected and decomposed using LISP’s list constructs. For ex-
ample, one may obtain the applicand (lambda (x) x) from the quoted ap-
plication ’((lambda (x) x) 3) by applying car. Similarly, evaluation (eval)
transforms data into programs. Frozen terms are, so to speak, thawed, and
reduction of their redexes takes place again. Note that since LISP languages
typically include functions for obtaining the name of a symbol as a string (e.g.,
symbol->string in Scheme), detailed lexical information about variables is
available to programs in these languages. So the reflective encoding provided
by these languages is at a rather low level of abstraction.
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Among the research problems related to meta-programming that have been
considered in the literature are static typing of meta-programs, and how meta-
programs deal with the scoping of variables. It is no accident that the LISP
languages, which best exemplify meta-programming, are not statically typed.
The soft type system of Wright and Cartwright for Scheme covers the features
of Scheme version R4RS, which does not include the meta-programming fea-
ture eval [52]. Static typing of general meta-programs appears difficult, and
the existing literature mostly considers static typing for a weaker form of meta-
programming called staged computation, used also for macro systems [22, 3, 32,
10, 44]. In staged computation, programs may generate programs as data, but
not inspect or decompose them. Some work on static typing of more general
meta-programs has been done, but a full account is currently lacking [31]. Ex-
tensible languages support the addition of new syntax to a host language, as well
as accompanying semantic analyses for more informative error reporting [11].

2.1.2 Variables in Meta-Programming

A meta-programming language is scope safe (or hygienic) iff variables may not
be captured or escape their scopes during computation. Dynamic variables
in Emacs LISP and Common LISP are a good example of a violation of
scope safety [30, 24]. Scheme R5RS’s macro language is designed to be scope
safe [21]. Other constructs in Scheme R5RS, however, enable violation of
scope safety, even though the language does not have dynamic variables. For a
violation of scope safety in spirit, though not technically, we have that (caddr
’(lambda (x) x)) evaluates to x. According to the R5RS language definition,
’(lambda (x) x) is a literal expression, and hence the occurrences of x in it
are not variables at all, but just (unscoped) literal data. So in this example,
a variable has been created (namely, the resulting unquoted x), but not by
means of removing it from its scope. Using R5RS’s macro system, however,
this example may be modified to give a true violation of scope safety. The
following macro extracts the variable x from its scope, by transforming the
binding lambda expression into a piece of literal data, and then extracting and
evaluating the quoted variable. 1

(define-syntax exv
(syntax-rules () ((exv arg) (car (car (cdr (car (cdr ’’arg))))))))

(exv (lambda (x) x))

Representation of variables is another issue considered in the literature on
meta-programming. Higher-order abstract syntax (HOAS), where variables in

1Please note that in the published version of this paper in HOSC, I incorrectly stated that
this sort of example could be done using quasiquotation. The example I gave there does not
work in R5RS Scheme, because lambda abstractions evaluate to procedures, from which one
cannot extract components, even when quoted. The current example using macros does work
in R5RS Scheme. Thanks to John Clements for pointing out my earlier error, and for Robby
Findler, Matthew Flatt, and Matthias Felleisen for an engaging email discussion about the
meaning of this example.
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reflected programs are represented directly using variables in meta-programs (as
opposed to, for instance, de Bruijn indices or other numbering schemes) greatly
eases the burden of operating on reflected program texts, but poses challenges
for static typing [51, 38, 34]. A great variety of other representation techniques
has been considered, for example in the solutions to the POPLmark challenge [2].
The details of these are not relevant to the current work, other than to note:
while HOAS can introduce technical complications, particularly for typed lan-
guages, it is widely acknowledged to be the most concise and convenient variable
representation technique.

2.2 Reflective Theorem Proving

Another kind of reflection is studied in Mathematical Logic and Automated
Theorem Proving [17, 14, 5, 8]. There, the object language is a logical theory.
The meta-level language is the language in which this theory is defined. Ob-
ject language entities such as formulas and proofs may refer to similar entities
at the meta-level, via an encoding of meta-level syntax and semantics in the
theory. The most famous example of this is Gödel’s use of reflection in the
development of his incompleteness theorems. He encodes formulas and proofs
as natural numbers, with the provability predicate then expressed via a logi-
cal formula. In this way, one can prove in the theory various formulas of the
form Provable pφq, where φ is a formula provable in the theory, and pφq is its
encoding as a number. Gödel’s results establish fundamental limits on logical
reflection: consistent theories of suitable strength cannot reflect meta-theoretic
proofs of their own consistency. Hence, they can express only proper fragments
of their meta-theories.

The principle use of reflection in automated theorem proving is to enable
safe extension of a trusted core prover by more efficient, untrusted reasoning
principles. An early example is the work by Davis and Schwartz on using reflec-
tion to allow safe extension of an arithmetic theory [8]. This requires encoding
formulas and proofs as numbers, as in Gödel’s work. Modern theorem provers
like Coq, HOL Light, and others support richer notions of data type than just
natural numbers [15, 45]. Such provers can support reflective activities with a
lower encoding penalty than that incurred by encoding formulas and proofs as
natural numbers, since their datatypes enable much more natural encodings.
Nevertheless, there is still an encoding penalty to pay. Users wishing to do
reflective proofs must work with some class of encoded objects, although some
systems allow shallower encodings than others. In Coq, for example, reflec-
tive tactics typically must encode the syntactic entities such as formulas upon
which they will operate (cf. [37]). They typically do not need to encode the
code for the tactic itself, however. The mapping from Coq formulas to encoded
formulas is implemented in Coq’s tactic language (Ltac), and is not susceptible
to formal reasoning, or even type checking. In provers like HOL Light, tactics
written in ML are type checked, but are otherwise outside the direct scope of the
prover’s proof system (although see [16]). In ACL2, meta-functions operating
on non-trivially encoded terms may be added to the trusted core once proved
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correct [17]. Non-trivially encoded terms are also used heavily in the Maude
term rewriting system [4].

3 The Archon Project

As stated above, the work reported in this paper is the first part of a project
called Archon, which aims to unite reflective programming and reflective the-
orem proving. The two main goals of Archon are formal verification of struc-
turally reflective programs and directly reflective theorem proving. Achieving
these goals is both work in progress and beyond the scope of the current pa-
per. Nevertheless, we consider them briefly, to help motivate the design of the
Archon programming language.

3.1 Verification of Meta-Programs

Formal verification of structurally reflective programs written in existing lan-
guages is a daunting prospect. Consider the LISP family of languages. The
imperative nature of these languages already greatly increases the difficulty of
formal reasoning, since program state (the environment, in LISP terminology)
must be handled explicitly. One could work in just a pure subset, as done
in ACL2, but then one does not support the full language, which may be a
drawback for reasoning about existing programs [20]. Furthermore, the level of
abstraction of program texts is quite low. As noted above, the encoding of pro-
gram texts as data in languages like Scheme leaves some low-level details (e.g.,
the string representations of variables) of program texts unabstracted. The lack
of scope safety poses another challenge, since in general, formal reasoning then
requires reasoning about the scope of variables.

Verification of meta-programs is motivated by the observation that there are
meta-programs such as compilers which are important targets for verification
(see, e.g., [25, 26]). There is also a deeper motivation. Static type systems and
other analyses can greatly aid formal verification. If a program is typable in
some non-trivial type system, there is a non-trivial theorem that holds about it,
which can be used as a lemma during verification of more general properties (see,
e.g., [48]). To obtain such lemmas in a machine-checked setting, it is necessary
to reason formally about the behavior of such analyses. Since these analyses are
meta-programs (computing a type, for example, from a program text encoded as
a piece of data in the language), formal verification of meta-programs is needed.

3.2 Directly Reflective Theorem Proving

The second goal of Archon is directly reflective theorem proving. Recall that
existing reflective provers require an encoding of at least some meta-level objects
like formulas and proofs. Directly reflective theorem proving is reflective proving
without any encoding. Instead of operating on encodings of theorem prover
structures like formulas or terms, programs like tautology checkers may operate
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on such structures directly. Safe extension of the prover’s trusted core then
becomes more feasible, since there is no non-trivial encoding, as implemented
by the Ltac code used in Coq, which falls outside the realm of the prover’s
reasoning system. Reasoning about reflective operations is also easier, since it
is not necessary to account for a non-trivial encoding.

3.3 The Problem and Further Outline

The crucial first step to meeting the above goals is to devise a programming
language with direct structural reflection, in which programs can operate di-
rectly on other programs, at an appropriate level of abstraction. The level of
abstraction of the reflective encoding in LISP is too low, because it results in
a contextual equivalence that is too fine. Recall that two program terms are
contextually equivalent iff no context can distinguish them by behaving in ob-
servationally different ways (e.g., returning true for the one term and false for
the other). Programs in LISP languages can distinguish between terms which
are α-equivalent (equivalent up to capture-avoiding renaming of bound vari-
ables). For example, building on the code given in Section 2.1.2 for extracting
the bound variable from a lambda abstraction, we can easily write a macro
which evaluates to #t if it is applied to (lambda (x) x) and (lambda (x) x),
and #f if it applied to (lambda (x) x) and (lambda (y) y):

(define-syntax complam
(syntax-rules () ((complam arg1 arg2) (eqv? (exv arg1) (exv arg2)))))

(complam (lambda (x) x) (lambda (x) x))

(complam (lambda (x) x) (lambda (y) y))

The first expression evaluates to #t, and the second to #f. 2

With a good higher-level encoding scheme, α-equivalence of program texts
should certainly imply contextual equivalence of their encodings, and the lan-
guage should be scope safe. Going further, we can observe that for a general
meta-programming language, α-equivalence of programs should coincide with
contextual equivalence of their encodings. For this implies that meta-programs
have an intensional enough view of encoded programs to be able to make all the
distinctions we consider relevant at the meta-level. For ease of formal reasoning,
the language should be pure, with no imperative features. Finally, it is desir-
able for the encoding of programs to use higher-order abstract syntax (HOAS)
where applicable, since this is by far the most convenient variable representation
technique (as discussed in Section 2.1.2).

An important step towards these goals has been taken by Wand, who achieves
a minimalistic pure programming language with a reflective encoding meeting
the above criteria [50]. Unfortunately, Wand’s language is not suitable for gen-
eral meta-programming (though it does not need to be, for the theoretical results

2This example has been added here, and is not contained in the published HOSC version.
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of his paper). This matter is discussed in detail in the next three sections. The
syntax and operational semantics of Archon are presented next (Section 7), as
well as examples demonstrating Archon’s utility for meta-programming (Sec-
tion 8). Section 8.4 shows how to implement the reflective primitives of Wand’s
language in Archon, thus further establishing the new language’s expressive-
ness. A prototype implementation of Archon is discussed and evaluated in
Section 9.

4 Wand’s System

Wand defines operations fexpr (for quotation) and eval which map program
terms to their HOAS-based Mogensen-Scott encodings (reviewed below) and
back [50]. He proves that α-equivalence of programs coincides with contextual
equivalence of their encodings. This achieves the goal mentioned above for a
higher-level encoding of terms. The motivation for Wand’s work is, in a sense, a
negative one: he wishes to point out the difficulties which reflective capabilities
raise for traditional approaches to applications like compilation. These rely on
coarser notions of contextual equivalence than just α-equivalence, for example to
do source-to-source optimizations. Such optimizations are intended, of course,
to result in terms which are not α-equivalent to the unoptimized terms. It is
not Wand’s aim to give an account of general meta-programming in his pro-
posed system, since for his purposes, it is enough to establish the triviality of
contextual equivalence (namely, that it coincides with α-equivalence). Indeed,
Wand’s system cannot be used for general meta-programming, at least not in
any obvious way. We explain why (in Section 6 below), after first reviewing his
system.

The syntax for Wand’s system is the following (cf. [50, pages 90–91]):

T ::= x | λx.T | T T | fexpr T | eval T

Here and below we use standard abbreviations from lambda calculus including
left associativity of application, abbreviated notation for consecutively nested
lambda abstractions, and lambda abstraction with scope extending as far as
syntactically possible to the right. To define the operational semantics of this
language, we first designate reduction contexts R and values V , as follows:

R ::= [] | (R M) | ((λx.M) R) | (fexpr R) | (eval R)
V ::= λx.M | (fexpr V )

We use a standard notion of reduction contexts R. Recall that these contain
exactly one occurrence of the hole [], which may be filled with a term M with the
notation R[M ] . Reduction contexts indicate, in a compact way, the evaluation
order of the language. The operational semantics is now defined by the following
reduction rules:

R[((λx.M) V )] → R[[V/x]M ]
R[((fexpr V ) M)] → R[(V pMq)]
R[(eval pMq)] → R[M ]

8



The second and third reduction rules rely on an encoding function p·q, defined
just below. We first observe that intuitively, ((fexpr V ) M) calls V on the
encoding of M , where M need not be a value. Indeed, the whole point is that
arbitrary program terms M , including ones which would otherwise reduce, are
frozen by fexpr and presented to V . Frozen terms may then be thawed using
eval. As Wand explains in an endnote, it is necessary to include eval as a
primitive in the language, due to the way the encoding works. We will return
to this point below. The encoding is defined as follows:

pxq = λa b c d e.a x
pM Nq = λa b c d e.b pMq pNq
pλx.Mq = λa b c d e.c λx.pMq
p(fexpr M)q = λa b c d e.d pMq
p(eval M)q = λa b c d e.e pMq

Wand calls this encoding a Mogensen-Scott encoding, since Mogensen defines
an encoding with the essential features of the above. Mogensen’s encoding ex-
tends an encoding attributed to Dana Scott with the use of HOAS (higher-order
abstract syntax) in the clause for encoding lambda abstractions [29]. Since these
encodings appear to be less well known than, say, the Church encoding, and
since they play a crucial role both in understanding the limitations of Wand’s
system and the contribution of the present work, we pause now to consider them
(readers familiar with these encodings may, of course, wish to skip the following
Section).

5 The Mogensen-Scott Encoding

There are a variety of ways to encode inductive datatypes using lambda calculus
terms (see, e.g., [49] or [7, Chapter 13]). Informally, the basic problem is to
define the fundamental operations of an inductive datatype as pure lambda
terms. So constructors (e.g., in Scheme, ’() and cons), testers (e.g., null?)
and selectors (e.g., car and cdr) are to be defined in pure lambda calculus,
instead of taken as primitive, as they are in LISP languages.

5.1 The Church Encoding

Before considering the Scott encoding and its extension by Mogensen, let us
recall the Church encoding, which may be more familiar to some readers. We
encode the operations of an inductive datatype in the following way. Suppose
the datatype has n constructors, where the i’th constructor Ci has arity a(i).
We encode Ci by the following lambda term, where we write c̄ for c1 . . . cn:

λx1 . . . xa(i).λc1 . . . cn.ci (x1 c̄) . . . (xa(i) c̄)

This term takes in the a(i) arguments to constructor Ci as x1, . . . , xa(i). It
then returns a lambda abstraction (let us call it M) which accepts n arguments
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c1, . . . , cn, one for each constructor of the datatype. These arguments are it-
erators, which will be applied according to the structure of the data. This M
then applies the i’th iterator to, not literally the input arguments x1, . . . , xa(i),
but rather to what we might think of as the transposition of those inputs to
the iterators c1, . . . , cn. That is, each Church-encoded piece of data, such as the
arguments x1, . . . , xa(i), begins by accepting n iterators to apply according to
the structure of the data. Our term M transposes the arguments to the con-
structor, so that they apply the given iterators c1, . . . , cn, rather than whatever
other iterators they would have taken in.

A simple example helps demonstrate this encoding. Consider the inductive
datatype of the natural numbers in unary notation. There are two constructors,
S (successor) and Z (zero), where the former has arity 1 and the latter has arity
0. They are Church encoded like this:

S := λx1.λs z.s (x1 s z)
Z := λs z.z

With this encoding, the first few numerals are defined as follows, and satisfy
the stated β-equivalences:

0 := Z =β λs z.z
1 := S Z =β λs z.s z
2 := S (S Z) =β λs z.s (s z)
3 := S (S (S Z)) =β λs z.s (s (s z))

5.2 The Scott Encoding

As the source for the Scott encoding, the Computer Science literature depends
on the following citation from Curry et al.: “Dana Scott, A system of func-
tional abstraction. Lectures delivered at University of California, Berkeley, Cal.,
1962/63. Photocopy of a preliminary version, issued by Stanford University,
September 1963, furnished by author in 1968” [7, page 504]. This work appears
not to have been subsequently published. Disregarding this bibliographic issue,
we consider the Scott encoding as follows. Given an inductive datatype pre-
sented as at the start of the previous section, we encode constructor Ci by the
following lambda term:

λx1 . . . xa(i).λc1 . . . cn.ci x1 . . . xa(i)

The crucial difference between this term and the corresponding term from the
Church encoding is that here, the inputs x1, . . . , xa(i) are not “transposed”
to use the iterators c1, . . . , cn. This means that lambda abstractions occur all
throughout the encoding of a compound piece of data, unlike in Church-encoded
data, where such lambda abstractions occur only at the very top of the term.
For the natural number datatype, the definition specializes as follows:

S := λx1.λs z.s x1

Z := λs z.z
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With this encoding, we may obtain the first few numerals by call-by-value re-
duction (denoted here by ⇓cbv) using S and Z:

0 := Z ⇓cbv λs z.z
1 := S Z ⇓cbv λs z.s 0
2 := S (S Z) ⇓cbv λs z.s 1
3 := S (S (S Z)) ⇓cbv λs z.s 2

So for example, the Scott encoding of 2 may be written fully as

λs z.s (λs z.s (λs z.z))

In contrast, the Church encoding of 2 is β-equivalent to

λs z.s (s z)

Where Church-encoded data accept iterators to apply according to the struc-
ture of the term, Scott-encoded data may be viewed as accepting continuations.
The appropriate continuation will be called with the immediate subdata of a
given piece of data. Thus, the Scott encoding encodes data as case statements,
instead of as iterations. For example, we can define the predecessor function for
Scott-encoded numerals as follows (where zero is taken to be its own predeces-
sor):

λx.x (λp.p) 0

A Scott-encoded numeral x is accepted as input by this lambda term. This x is
then immediately applied to two continuations. The first continuation will be
used when x is a successor number. The second will be used when x is zero.
Whichever continuation is called, it will be called with the immediate subdata
of x. If x is zero, it has no subdata, so the continuation 0 is called with no
arguments (i.e., simply returned). If x is a successor number, its immediate
subdata is its predecessor p. This will be given as the input to the continuation
λp.p, which simply returns it, thus producing the predecessor.

5.3 Comparison of the Church and Scott Encodings

The Church encoding seems to be more familiar to computer scientists than
the Scott encoding. For example, the Church encoding is presented in detail
in standard programming languages textbooks like Pierce’s, while the Scott en-
coding is not mentioned [35]. The Church encoding does have some advantages
over the Scott encoding. As shown just above, Church-encoded data are gen-
erally more concise than Scott-encoded data (though not asymptotically so).
The main advantage and perhaps the reason they are better known is that
Church-encoded data and many common operations on them are typable in
System F [12]. Thanks to strong normalization of System F, the large class of
programs expressible as well-typed operations on Church-encoded data (includ-
ing non-trivial examples like list-sorting functions) are statically guaranteed to
terminate.
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Scott-encoded data, in contrast, is not in any obvious way typable in pure
System F. They appear to require both universal and recursive types for ty-
pability. Since strong normalization fails in the presence of recursive types,
we cannot establish termination of programs manipulating Scott-encoded data
just by static typing in a traditional type system. Nevertheless, the Scott en-
coding enjoys two critical advantages over the Church encoding, which should
make them preferable for general programming. First, constructor terms (like
S (S Z)) evaluate to their intended encodings in call-by-value lambda calculus.
This is not the case with the Church encoding, where a constructor term like
(S Z) evaluates to a value in one step as follows in the call-by-value strategy:

(S Z) → λs z.s (Z s z)

In order to obtain the intended encoding λs z.s z, two β-reductions would need
to be performed beneath a lambda abstraction, which is not allowed with the
call-by-value or call-by-name strategy.

The second advantage of the Scott encoding is that constant-time selector
functions are easily definable, as discussed above. With the Church encoding,
in contrast, known implementations of predecessor are rather complicated, and
run in time linear in the size of the input numeral.

5.4 Mogensen’s Addition to the Scott Encoding

Mogensen extends the idea of the Scott encoding using HOAS to encode untyped
lambda terms [29]:

pxq = λa b c.a x
pM Nq = λa b c.b pMq pNq
pλx.Mq = λa b c.c λx.pMq

The crucial difference from a Scott encoding as defined in the previous section
is in the third clause of this definition. Lambda abstractions are encoded by
using a lambda abstraction for the bound variable (in λx.pMq). So variables
are represented using variables. We will not review here the general advantages
of this representation (see the works cited in Section 2.1.2 above), but consider
next the specific effect of this representation in Wand’s system.

6 Meta-Programming in Wand’s System

The use of the Mogensen-Scott encoding of lambda terms in Wand’s system
results in a HOAS-based encoding of lambda terms which satisfies the goals
stated in Section 3.3 above [50]. He thus accomplishes his stated objective of
showing the triviality of contextual equivalence, and to highlight the challenges
this poses for applications like source-to-source optimization.

Certain kinds of meta-programs can be written in Wand’s system, as demon-
strated below (Section 8.1). But Wand’s language is inadequate for meta-
programs which generate code, or even encodings of code, as indeed hinted
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by Endnote 2 of his paper. Wand there explains that he was led to include eval
as a primitive operation in the language because it is not in any obvious way
definable, given the Mogensen-Scott encoding. This limitation is not unique to
eval. There is no obvious way to define any non-trivial code-generating meta-
programs (like eval) in Wand’s system. The problem is that there is no way to
compute beneath a lambda abstraction. For example, as mentioned in Wand’s
endnote, suppose we try to implement eval. Mogensen gives code for eval that
works, but only if arbitrary β-reduction is used. In the call-by-value setting of
Wand’s language, we could try something like the following:

eval := fix λeval m. m (λx.x)
(λm n.(eval m) (eval n))
(λm.λx.eval (m x))

where fix is a standard call-by-value fixpoint operator, which may be defined
as:

fix := λf.(λx.f (λy.x x y)) (λx.f (λy.x x y))

The problem, noted by Wand, is in the third line of the term for eval above,
where we try to evaluate a lambda abstraction m by evaluating, essentially,
its body, beneath a new lambda abstraction (“λx.eval (m x)”). With call-by-
value or call-by-name evaluation, the redex eval (m x) cannot be evaluated here,
since it is buried beneath a lambda abstraction. This same problem afflicts any
non-trivial meta-program generating code or encodings of code. Meta-programs
which need to recursively compute the body of a lambda abstraction cannot be
implemented (in any obvious way). For to do so as in existing approaches,
they would either compute the body using a free variable which would then be
captured, or else they would compute beneath the lambda abstraction. The
former option is disallowed by scope safety, and the latter by the evaluation
strategy. Hence, this language, despite the desirable properties of its reflective
encoding, is not suitable for general meta-programming. We can conclude addi-
tionally that it is not sufficient, for the purposes of general meta-programming,
to have α-equivalence of programs coincide with contextual equivalence of their
encodings.

7 The Archon Programming Language

We turn now to the definition of the Archon programming language, which
solves the problems discussed above with existing structurally reflective lan-
guages. Archon is pure and scope safe. We have α-equivalence of programs
coinciding with contextual equivalence of their encodings, which use HOAS.
These qualities are shared with Wand’s language. Like Wand’s system, we are
striving in Archon for something like minimality or independence: no lan-
guage construct is directly definable using the others, in the sense that any use
of one operator can be replaced by some constant-time computable term with
the same extensional behavior. If scope safety is a form of soundness, we are
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also interested in completeness. We might take completeness in this context
to mean that every scope-safe function implementable in an untyped lambda
calculus with more general, non-scope-safe meta-programming constructs (e.g.,
LISP) can be implemented in the scope-safe language. While independence and
completeness are both desired properties of the language, proving or disproving
these must remain to future work.

Archon is suitable for general meta-programming, as demonstrated by sev-
eral examples in Section 8 below. The shortcoming of Wand’s language, namely
the inability to compute beneath lambda binders, is repaired in Archon. Or-
thogonally, Archon opts to place the burden of reflection on the programming
language, rather than the reflective encoding. Archon adopts the identity func-
tion for the encoding, at the cost of introducing new reflective programming
constructs for operating on program terms. Hence, Archon meta-programs
operate directly on raw program terms, without any encoding. This shift of the
burden of reflection from the encoding to the language is justified as follows.
First, the language must already be extended in some way to allow computation
beneath lambda abstractions. Once we have begun extending the language to
allow for reflection, we can achieve a simpler language by shifting all reflective
burden from the encoding to the language. This simplification has practical
benefits. In reasoning (either formally or informally) about the behavior of
meta-programs, we can consider the manipulated programs directly, in their
natural form as programs of the language, and not via a non-trivial encoding.
In contrast, with Wand’s language, we must contend not only with additional
reflective language constructs, but with the overhead of the Mogensen-Scott
encoding.

One quantitative measure of the simplicity of the language design is its lo-
cality, in the following sense. Wand’s reduction rules for fexpr and eval require
recursive meta-level computation to apply or undo the Mogensen-Scott encod-
ing, for a single reduction step. In contrast, Archon’s reflective constructs
require only constant-time meta-level computation for a single reduction step.
A single step of evaluation, without any recursive meta-level evaluation, suffices
to eliminate any use of Archon’s reflective constructs, in favor of constructs of
untyped lambda calculus.

7.1 Syntax

The syntax of Archon terms T (we also write M , N , R) appears in Figure 1.
We write x (as well as y and z) only for variables, drawn from some countably
infinite set. We then have call-by-value λ-abstractions and call-by-name λ̄-
abstractions, and applications (written using juxtaposition as usual). When a
call-by-value lambda abstraction appears in an application, its argument must
be evaluated before the application can be β-reduced. In contrast, arguments are
passed to call-by-name lambda abstractions unevaluated. This is useful in meta-
programming for passing around raw program terms, which would otherwise
evaluate.

For meta-programming purposes, it seems required in practice to allow com-

14



T ::= x | λx.T | λ̄x.T | T T | open T T | vcomp T T

| swap T | T : T T T T T T T

Figure 1: The Syntax of Archo Terms

putation with open terms (i.e., terms which contain free variables). So in Ar-
chon, (free) variables evaluate to themselves. In LISP languages, in contrast,
evaluation of a free variable is not allowed (and typically causes evaluation to
abort with an error). Applications like a b, where a and b are free variables,
also evaluate to themselves. Indeed, the set of values V in Archon is somewhat
more complex than usual in call-by-value or call-by-name lambda calculus:

V ::= λx.T | λ̄x.T | A
A ::= x | A V

The remaining four constructs of the language are the reflective constructs,
informally explained next (the formal operational semantics is given in the next
Section). We rely on no parsing conventions for Archon below, except the
(standard) ones mentioned above from lambda calculus.

7.1.1 Opening a Lambda Abstraction

The open construct “opens” a lambda abstraction to allow computation on its
bound variable and its body. An open expression has two subexpressions. The
first is the term to attempt to open. The bound variable and the body of this
term, if it is a lambda abstraction, are both passed to the second argument of
open. For an artificial but representative example, the following term opens
λx.x and applies its body (x, passed as the argument for variable b) to itself:

open (λx.x) (λv b.(b b))

Since Archon is intended to be scope safe, open cannot simply return x x in
this case, for then the bound variable x would escape its scope. The solution
adopted in Archon is simply to rebind the variable around the result of the
computation, using the same kind of abstraction (call-by-name or call-by-value)
as the opened lambda abstraction. So the above example term evaluates to
λx.x x. The behavior of open when its first subexpression is not a lambda
abstraction is not important. Below, we choose to have the open expression
evaluate to a rather arbitrary term. It would also be reasonable to have it abort
the computation. This construct has some features in common with a recently
proposed reflective construct called map-closure [40]. The difference is that
map-closure operates on environments in closures, not lambda abstractions.
Hence, it is a computationally rather than structurally reflective construct, and
not suitable in any obvious way for general meta-programming.
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7.1.2 Comparing Variables

For some meta-programs it is necessary to test whether two free variables are
the same or different. This is done in Archon using the vcomp construct. The
term vcomp T1 T2 evaluates to true if T1 and T2 are identical free variables.
Otherwise it evaluates to false. Here and below, the expressions true and false
are abbreviations for Scott-encoded call-by-name booleans λ̄x.λ̄y.x and λ̄x.λ̄y.y.
Note that the Scott and Church encodings coincide on enumerated datatypes
like the boolean datatype. Note also that using call-by-name abstractions here
(and in other Scott-encoded data) means that unused cases are not executed
when a piece of data is used as a case construct.

7.1.3 Swapping Lambda Abstractions

The operation swap is used to swap the order of consecutive lambda bindings.
For example, our operational semantics will give us the following evaluation
(where ⇓, defined below, is the evaluation relation):

swap (λx y.x) ⇓ λy x.x

It may not be obvious to the reader why this operation is practically useful, but
it turns out to be necessary for a class of practical meta-programs, in particular
those which must recursively traverse Archon terms to compute some resulting
term, using the decomposition operator discussed next. An example of such a
meta-program is given later, in Figure 9.

It is not clear if swap can be defined using other language features. One
might consider defining it by opening the lambda abstraction twice, and then
using a recursive function to traverse the body and swap the variables (aided,
for example, by variable comparison) wherever they occur. But such traversals,
as just mentioned, appear to need swap already. So it may not be possible to
define swap in terms of other operations. This question must be left open. Just
as for open, the behavior of swap when its subexpression does not evaluate to
a consecutively nested lambda abstraction is not important, and is chosen to be
a rather arbitrary term.

7.1.4 Decomposition

The final construct of Figure 1 is called decomposition. This is an inten-
sional case-analysis construct, which takes apart raw (i.e., unevaluated) program
terms, and passes their immediate subterms as arguments to the appropriate
branch of the case. In the decomposition

T : T T T T T T T

the first term is the one being decomposed, and the remaining seven terms
are the terms to use for each of the seven kinds of constructs, in the order
in which they appear in Figure 1. Observe that Archon does have exactly
seven constructs, if we lump call-by-value and call-by-name lambda abstractions
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together, as we do. They are distinguished in decompositions by passing a
Scott-encoded boolean to the case for lambda abstractions, which is true for
call-by-value, and false for call-by-name. For a simple example of the use of
decomposition, the following term evaluates to b a (here writing in the unused
cases for an arbitrary lambda term):

(a b) : (λx y.y x)

A final note on decomposition is that decomposing a lambda abstraction does
not access its subexpressions, since this functionality is already provided by
open.

7.2 Operational Semantics

A big-step operational semantics for Archon is given in Figures 2, 3, and 4.
The judgment T ⇓ R means that the term T evaluates to R. In the rules
E-Lam and E-OpenLam, λ∗ is either lambda abstraction operator (λ or λ̄), as
are λ1 and λ2 in the rule E-Swap. Variable renaming is accounted for explicitly
in E-OpenLam and by capture-avoiding substitution, denoted [T2/x]T1. It is
necessary, in general, to rename the bound variable in E-OpenLam, to avoid
clashes with existing free variables.

The choice of λx.false for the result of attempting to open or swap a term
which is not a lambda abstraction or a consecutively nested lambda abstraction
in rules E-Open and E-Swap, respectively, is not essential. There is also some ar-
bitrariness in whether or not to evaluate the first subexpressions of open, swap,
and vcomp expressions. The language is not greatly changed by the choice, for
each of those three constructs, of whether to evaluate this subexpression before
reduction or not.

Note that evaluation of terms without open, vcomp, swap, and decompo-
sition (Figure 2) is contained in the β-equivalence relation (on open terms) of
the standard untyped λ-calculus, if we collapse both lambda abstractions to the
standard one. The meta-level function FV used in E-OpenLam is defined in a
standard way to give the set of free variables of a term.

7.3 Meta-Theory

The side condition in E-OpenLam prevents confusion of the newly introduced
free variable with other free variables. The only other potential opportunity for
variable capture is in applying substitutions, but these are capture-avoiding by
definition. This fact and the following theorem, easily proved by induction on
the structure of computations, establish scope safety of the language:

Theorem 1 For all terms T and R, if T ⇓ R, then FV(R) ⊆ FV(T ).

The following theorem can also be established. Together with the implementabil-
ity of a test for α-equivalence in the language (Section 8.2), it suffices to prove
that α-equivalence of programs coincides with contextual equivalence.
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x ⇓ x E-Var

λ∗x.T ⇓ λ∗x.T E-Lam

T1 ⇓ λx.R1 T2 ⇓ R2 [R2/x]R1 ⇓ R
T1 T2 ⇓ R

E-AppCbv

T1 ⇓ λ̄x.R1 [T2/x]R1 ⇓ R
T1 T2 ⇓ R

E-AppCbn

T1 ⇓ R1 T2 ⇓ R2 R1 not a lambda abstraction
T1 T2 ⇓ R1 R2

E-App

Figure 2: Evaluation of Standard Constructs

T2 y [y/x]T1 ⇓ R y 6∈ FV(λ∗x.T1) ∪ FV(T2)
open (λ∗x.T1) T2 ⇓ λ∗y.R

E-OpenLam

T1 not a lambda abstraction
open T1 T2 ⇓ λx.false

E-Open

vcomp x x ⇓ true
E-VcompEqVars

T1 6≡ T2 or T1 or T2 not a variable
vcomp T1 T2 ⇓ false

E-Vcomp

T ⇓ λ1x.λ2y.R

swap T ⇓ λ2y.λ1x.R
E-SwapLam

T ⇓ R1 R1 not a consecutively nested lambda abstraction
swap T ⇓ λx.false

E-Swap

Figure 3: Evaluation of Swap, Open, and Vcomp
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T1 z ⇓ R
z : T1 T2 T3 T4 T5 T6 T7 ⇓ R

E-DecompVar

T2 true λz.M ⇓ R
(λz.M) : T1 T2 T3 T4 T5 T6 T7 ⇓ R

E-DecompCbv

T2 false λ̄z.M ⇓ R
(λ̄z.M) : T1 T2 T3 T4 T5 T6 T7 ⇓ R

E-DecompCbn

T3 M N ⇓ R
(M N) : T1 T2 T3 T4 T5 T6 T7 ⇓ R

E-DecompApp

T4 M N ⇓ R
(open M N) : T1 T2 T3 T4 T5 T6 T7 ⇓ R

E-DecompOpen

T5 M N ⇓ R
(vcomp M N) : T1 T2 T3 T4 T5 T6 T7 ⇓ R

E-DecompVcomp

T6 M ⇓ R
(swap M) : T1 T2 T3 T4 T5 T6 T7 ⇓ R

E-DecompSwap

T7 M M1 M2 M3 M4 M5 M6 M7 ⇓ R
(M : M1 M2 M3 M4 M5 M6 M7)

: T1 T2 T3 T4 T5 T6 T7 ⇓ R

E-DecompDecomp

Figure 4: Evaluation of Decomposition
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Theorem 2 For all α-equivalent terms T and T ′, if T ⇓ R, then T ′ ⇓ R′

where R′ is α-equivalent to R.

Proof. The proof is by induction on the structure of T ⇓ R. We consider just
the case for E-OpenLam. We have

T2 y [y/x]T1 ⇓ R1 y 6∈ FV(λ∗x.T1) ∪ FV(T2)
open (λ∗x.T1) T2 ⇓ λ∗y.R1

and also
Γ ` (open (λ∗x.T1) T2) =α (open (λ∗x′.T ′1) T ′2)

From these facts, we get y 6∈ FV(λ∗x′.T ′1) ∪ FV(T ′2). Hence, we have

T2 y [y/x]T1 =α T ′2 y [y/x′]T ′1

The induction hypothesis may now be applied to obtain R′ =α R with

T ′2 y [y/x′]T ′1 ⇓ R′1

We can then obtain the desired evaluation judgment by applying E-OpenLam,
with λ∗y.R1, which is easily seen to be α-equivalent to λ∗y.R′1.

8 Meta-Programming Examples

We now consider meta-programming examples in Archon. We may distin-
guish meta-programs which recursively inspect code from meta-programs which
also recursively produce it. The former class can be implemented in Wand’s
language, since inspection of Mogensen-Scott encoded lambda terms is sup-
ported. As discussed in Section 6, the latter class is not in any obvious way
implementable, except in trivial cases (e.g., constant functions). Archon can
implement both kinds of meta-programs, and has some advantages for imple-
menting code-inspecting meta-programs. So we begin by comparing Archon
and Wand’s language on a meta-program which is canonical for Wand’s pur-
poses, namely testing arbitrary terms for α-equivalence. Note that this is prov-
ably not implementable in untyped lambda calculus, so both Wand’s language
and Archon are more expressive (see, e.g., [23, Section 3.3.4]). Section 8.3
gives another representative meta-program, namely to compute from n and f
the function λx.fn x, where fn denotes n-fold application of f .

8.1 Alpha Equivalence Test in Wand’s System

In Wand’s system, we can define a test eq for α-equivalence of encoded terms
as a term of the language. This eq cannot take in arbitrary terms and then
encode them itself using fexpr, since evaluation of an application of eq to two
arguments will cause those arguments to be evaluated. So it must operate
on Mogensen-Scott encoded terms (cf. the family Eq of terms defined in [50,

20



Figure 1]). It must furthermore operate only on closed lambda terms, since it
has no means to inspect free variables. Indeed, as eq traverses terms, it must
substitute some entities which it can inspect for all the bound variables retained
in the Mogensen-Scott encoding. It may use Scott- or Church-encoded natural
numbers for this purpose. The number to introduce for the next bound variable
it encounters must be taken as an additional input to eq.

8.1.1 Helper Functions

The code for eq makes use of several defined helper functions. We use a standard
call-by-value fixed point operator fix, such as given in Section 6. We assume
S is the successor function in whichever encoding of natural numbers we are
using, and eqnat is the equality test for natural numbers (straightforwardly im-
plementable in both the Scott and Church encodings). We also use and as an
abbreviation for a standard implementation of conjunction on Scott-encoded
booleans. It is helpful also to define several operations on Mogensen-Scott en-
coded programs (“x”) which use one continuation (“t”) when encoded data has
a certain form (e.g., is an encoded application), and another (“f”) when it
does not have that form. Writing F1 as an abbreviation for λy.f and F2 as an
abbreviation for λy1 y2.f , we have

on app := λx t f.(x F1 t F1 F1 F1)
on lam := λx t f.(x F1 F2 t F1 F1)
on fexpr := λx t f.(x F1 F2 F1 t F1)
on eval := λx t f.(x F1 F2 F1 F1 t)

So we have
on app p(a b)q (λx y.x) false

evaluating to a, and

on app p(λx.x)q (λx y.x) false

evaluating to false. We also take “let x = T1 in T2” to abbreviate (λx.T2) T1,
as usual.

8.1.2 The Code for eq

The code for eq in Wand’s system is given in Figure 5. The function eq takes
input n for the next number to introduce for a bound variable, and inputs s and
t for the closed Mogensen-Scott encoded terms to compare for α-equivalence.
The basic idea of this code is first to do a case analysis on s, and then, in each
case, a subsequent case analysis on t. Recall from Section 5.2 that Scott-encoded
data are effectively their own case analyses. So to perform a case analysis on
s, we apply it to five continuations, one for each of the five syntactic forms s
could have. In each case, we perform the subsequent case analysis on t using the
helper functions from the previous Section. When s is a lambda abstraction (in
the third case), we apply that lambda abstraction to the next natural number to
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use for its bound variable. This, of course, causes the number to be substituted
for the bound variable. It can then be inspected in the case for variables (the
first case).

8.2 Alpha Equivalence Test in Archon

The Archon implementation of a test eq for α-equivalence is similar to the im-
plementation above in Wand’s system. Here, we factor out recursively checking
equality of constructs with two subterms as eq2, to keep the code more concise.
One advantage of implementing eq in Archon is that we can test α-equivalence
of program terms containing free variables. Furthermore, it is convenient not to
have to introduce numbers for bound variables. Also, we do not need to assume
that those terms are in an encoded form, since Archon meta-programs operate
directly on raw program terms.

8.2.1 Helper Functions

We use standard helper functions and and beq for conjunction and equality test
on Scott-encoded booleans. We make use of functions similar in spirit to the
functions like on app in the implementation in Wand’s system above. Below we
write F1 as an abbreviation for λ̄m.f , and similarly F2 for λ̄m n.f , and F8 for
λ̄m m1 m2 m3 m4 m5 m6 m7.f . The functions are then:

on lam := λ̄u t f.u : F1 t F2 F2 F2 F1 F8
on app := λ̄u t f.u : F1 F2 t F2 F2 F1 F8

on open := λ̄u t f.u : F1 F2 F2 t F2 F1 F8
on vcomp := λ̄u t f.u : F1 F2 F2 F2 t F1 F8

on swap := λ̄u t f.u : F1 F2 F2 F2 F2 t F8
on decomp := λ̄u t f.u : F1 F2 F2 F2 F2 F1 t

We also define nfix as follows, for a standard call-by-name fixpoint operator:

nfix := λf.(λx.f (λ̄y.x x y)) (λx.f (λ̄y.x x y))

This operator must be used instead of fix, since the Archon implementation
of eq uses call-by-name lambda abstraction to receive the two terms to test for
α-equivalence.

The Archon code for eq also needs a helper function beta reducek for per-
forming a single β-reduction. The basic idea of this function is that given two
terms, where the first term M is either of the form λx.B or of the form λ̄x.B, and
the second is N ; it should return [N/x]B. We cannot return this term directly,
without risk that it might reduce. So we return it instead via a continuation,
provided as a third argument. Here and below, let I abbreviate λz.z. The code
for this helper function is the following, which requires some explanation (note
that is used here just as another variable, with the name chosen to indicate
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eq := fix λeq n s t.
(s (λx.eqnat x t)

(λs1 s2.on app t (λt1 t2.and (eq n s1 t1) (eq n s2 t2)) false)
(λs1.on lam t (λt1.eq (S n) (s1 n) (t1 n)) false)
(λs1.on fexpr t (λt1.eq n s1 t1) false)
(λs1.on eval t (λt1.eq n s1 t1) false))

Figure 5: Test for α-Equivalence in Wand’s System

eq := nfix λeq.λ̄s t.
let eq2 = λon op.λ̄m n.

(on op t (λ̄m2 n2.and (eq m m2) (eq n n2))
false) in

(s : (vcomp s t)
(λ̄cbv1 s.

on lam t (λ̄cbv2 t.
and (beq cbv1 cbv2)

((open s λ̄x tb.(beta reducek t x (eq tb)))
I))

false)
(eq2 on app)
(eq2 on open)
(eq2 on vcomp)
(λ̄m.on swap t (eq m) false)
(λ̄m0 m1 m2 m3 m4 m5 m6 m7.

on decomp t
(λ̄n0 n1 n2 n3 n4 n5 n6 n7.

(and (eq m0 n0) (and (eq m1 n1)
(and (eq m2 n2) (and (eq m3 n3)
(and (eq m4 n4) (and (eq m5 n5)
(and (eq m6 n6) (eq m7 n7)))))))))

false))

Figure 6: Test for α-Equivalence in Archon
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informally that it is not subsequently used):

beta reducek := λ̄M N k.
let M1 = open M λ̄x B.λz.B in
let M2 = open (λ̄y.y) (λ̄ y.M1 y) in
let R = M2 N in
((open R λ̄ b.k b) I)

The action of this code is rather subtle, but it well illustrates the power of
the open construct. Our idea in computing [N/x]B from λx.B and N is illus-
trated informally by the following transformation sequence (the case for λ̄x.B
is similar):

(λx.B) N ; (λx.λz.B) N ; (λ̄x.λz.B) N ; λz.[N/x]B

In more detail, we first wish to insert a dummy binder beneath the λx, so that
applying the lambda abstraction to N will not trigger reductions in B. So we
first want to compute a term M1 defined to be λx.λz.B. Then we want to
convert the call-by-value λx to a call-by-name λ̄x, so that applying the lambda
abstraction to N will not cause N to evaluate. So we next want to compute
a term M2 defined to be λ̄x.λz.B. Finally, we can achieve our β-reduction by
applying this M2 directly to N , and allowing reduction in Archon to perform
the substitution. This results in a term R of the form λz.[N/x]B. It suffices
now just to open this lambda abstraction and apply the continuation k to its
body (which is [N/x]B). Whatever result the continuation produces will then
be closed beneath a binding λz, since uses of open (such as this one opening R)
always rebind the variable of the opened lambda abstraction. To eliminate this
dummy binding, we apply the result to an arbitrary value (here, I).

We leave it to the reader to confirm that the code above computes M1 as
specified, and just consider in detail the computation of M2. The code for
beta reducek computes M2 (“λ̄x.λz.B”) from M1 as follows. It opens a new
lambda abstraction λ̄y.y, using λ̄ y.M1 y. The latter term accepts the bound
variable (y, received via variable ) and the body (also y, received by variable
y) of this λ̄y.y. It then applies M1 to y. This results in λz.[y/x]B. The result
of this computation is then closed beneath a rebinding λ̄y, since this is always
how evaluation of an open expression finishes. So the result is λ̄y.λz.[y/x]B,
which is α-equivalent to the desired term λ̄x.λz.B. The use of variable y here is
purely for readability of the example. Thanks to the scope safety of Archon,
the code works just as well if we use x instead of y.

This example provides some small evidence for completeness. It shows that
an operation, namely changing a lambda abstraction from call-by-value to call-
by-name, which one might otherwise doubt possible in Archon, is in fact im-
plementable. Similar code can convert a call-by-name to a call-by-value abstrac-
tion.
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8.2.2 The Code for eq

Figure 6 gives the Archon code for the test eq for α-equivalence. Its basic struc-
ture resembles that of the code in Wand’s language (Figure 5). Some differences
have already been noted. The top-level case analysis is performed using Ar-
chon’s decomposition operator, instead of by application of a Mogensen-Scott
encoded term. The first case, for variables, is implemented using vcomp, as ex-
pected. The case for lambda abstractions (the second case) is the most complex.
Naturally, for two lambda abstractions to be α-equivalent, they must either both
be call-by-value or both call-by-name. This is checked by beq cbv1 cbv2. To con-
tinue the comparison, we wish to compare the bodies. But we must make sure
the bodies are expressed using the same variable. So we open one lambda ab-
straction (“s”), obtain its bound variable (“x”) and do a single β-reduction of
t on x (using beta reducek, defined in the previous Section). This causes uses of
t’s bound variable to be replaced in its body (“tb”) by x. We may then compare
the two bodies. The lambda binder placed around the (boolean) result is then
removed by applying to I (defined, as stated above, to be λz.z).

8.3 Statically Iterated Function Application

We implement a familiar meta-programming example in Archon, namely stat-
ically iterated function application. The problem is to compute from n and f
the function λx.fn x, where fn denotes n-fold application of f . We rely here on
the helper function fix, defined exactly as above for Wand’s language; as well as
zero, succ, and plus for Scott-encoded unary numbers. A rather simple function
can build fn x from f , n, and x. If the function f is a lambda abstraction (as in
general we would expect it to be), then some care must be taken to return fn x
in such a way that it does not prematurely reduce. The code iter h in Figure 7
achieves this using the following idea. We return code from iter h underneath
a dummy lambda abstraction. To access the result of a recursive call, we must
then open this dummy lambda abstraction, access the body (“rb”), and then
place the result beneath a new dummy lambda abstraction (“λd.f rb”). Since
opening the first dummy lambda abstraction rebinds the dummy variable, we
end up with two dummy lambda abstractions at the start of the term. We can
eliminate the first one simply by applying the result of the open to some arbi-
trary value (here, I). Then to build the function λx.fn x, the Archon term
iter in the figure just needs to open a new lambda abstraction (“λx.x”) and
use iter h to build λd.fn x. When the open returns, we have λx.λd.fn x. To
eliminate the dummy binding of d, iter just swaps the two lambda abstractions
and applies the result to an arbitrary value (“I”). A similar idea is used in the
third piece of code in the figure, for multiplication by statically iterated addition
(cf. [32, Section 2]).
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iter h := fix λiter h x n f.
(n (λp.let r = iter h x p f in

((open r λ̄x rb.λd.f rb) I))
λd.x)

iter := λn f.(swap (open (λx.x) λx .iter h x n f)) I

mult := λn.(swap (open (λm.m) λm .iter h zero n (plus m))) I

Figure 7: Statically Iterated Function Application in Archon

8.4 Encoding and Decoding in Archon

We can implement Mogensen-Scott encoding and decoding functions (corre-
sponding to fexpr and eval in Wand’s language) in Archon as follows. Fig-
ure 8 first defines the Mogensen-Scott encoding for Archon terms, and then
gives an Archon term which when applied to a term t, evaluates to ptq (see
Figure 8). The crucial ideas are the use of call-by-name lambda abstractions
to input raw program terms, and the use of open to recurse on the bodies of
lambda abstractions. Correctness of the code can be expressed like this:

Theorem 3 For all terms T , encode T ⇓ pTq.

Figure 9 defines the decoding function for the Mogensen-Scott encoding of
Archon terms, and then gives an implementation in Archon. Notice that
where the encoding function uses Archon’s decomposition construct, the de-
coding function may just apply the Scott-encoded data as a case statement. As
for the example of iterated function application above, the crucial idea is to
return expressions beneath a dummy lambda abstraction (binding variable d),
in order to prevent decoded expressions from reducing. The bodies of lambda
abstractions are accessed using open∗, defined as follows:

open∗ := λx.λ̄y.open x y

This term works just like open except that it evaluates its first argument. It
is used in the code for decode to cause the recursive calls to execute instead
of intensionally analyzing them. (Recall from Section 7.2 that for inessential
reasons, we have designed the operational semantics of open so that it does not
evaluate its first argument.) Also, recall that, as stated above, I is defined to
be λz.z.

The only complication that arises is for the case of lambda abstractions
(the second case in the Archon code of Figure 9). After the body has been
decoded and evaluation of the open expression completes, we have a dummy
lambda abstraction trapped beneath the binding that has been replaced by the
evaluation of open. This is similar to the situation with iter in Section 8.3.
We just swap the two bindings using swap. For example, the Mogensen-Scott
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pxq = λV L A O C S D.V x

pλz.Tq = λV L A O C S D.L true λz.pTq

pλ̄z.Tq = λV L A O C S D.L false λ̄z.pTq

pT1 T2q = λV L A O C S D.A pT1q pT2q

popen T1 T2q = λV L A O C S D.O pT1q pT2q

pvcomp T1 T2q = λV L A O C S D.C pT1q pT2q

pswap Tq = λV L A O C S D.S pTq

pT : T1 T2 T3 T4 T5 T6 T7q = λV L A O C S D.

D pTq pT1q pT2q pT3q

pT4q pT5q pT6q pT7q

encode := nfix λencode.λ̄t.t :
(λx.λV L A O C S D.V x)
(λb F. let r = open F (λx.λ̄F ′.encode F ′) in

λV L A O C S D.L b r)
(λ̄M N. let r = encode M in

let s = encode N in λV L A O C S D.A r s)
(λ̄M N. let r = encode M in

let s = encode N in λV L A O C S D.O r s)
(λ̄M N. let r = encode M in

let s = encode N in λV L A O C S D.C r s)
(λ̄M.let r = encode M in λV L A O C S D.S r)
(λ̄M M1 M2 M3 M4 M5 M6 M7.

let r = encode M in
let r1 = encode M1 in
let r2 = encode M2 in
let r3 = encode M3 in
let r4 = encode M4 in
let r5 = encode M5 in
let r6 = encode M6 in
let r7 = encode M7 in
λV L A O C S D.D r r1 r2 r3 r4 r5 r6 r7)

Figure 8: Mogensen-Scott Encoding and Its Implementation in Archon
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xλV L A O C S D.V xy = x

xλV L A O C S D.L true λx.Ty = λx.xTy

xλV L A O C S D.L false λ̄x.Ty = λ̄x.xTy

xλV L A O C S D.A T1 T2y = xT1y xT2y

xλV L A O C S D.O T1 T2y = open xT1y xT2y

xλV L A O C S D.C T1 T2y = vcomp xT1y xT2y

xλV L A O C S D.S Ty = swap xTy

xλV L A O C S D.D T T1 T2 T3

T4 T5 T6 T7y = xTy : xT1y xT2y xT3y

xT4y xT5y xT6y xT7y

decode := fix λdecode.λt.t
(λx d.x)
(λb F.swap (open∗ F (λ .λF ′.decode F ′)))
(λM N. (open∗ (decode M) (λ .λ̄M ′.

open∗ (decode N) (λ .λ̄N ′. λd.M ′ N ′))) I I)
(λM N. (open∗ (decode M) (λ .λ̄M ′.

open∗ (decode N) (λ .λ̄N ′. λd.open M ′ N ′))) I I)
(λM N. (open∗ (decode M) (λ .λ̄M ′.

open∗ (decode N) (λ .λ̄N ′. λd.vcomp M ′ N ′))) I I)
(λM.(open∗ (decode M) (λ .λ̄M ′. λd.swap M ′)) I)
(λM M1 M2 M3 M4 M5 M6 M7.

(open∗ (decode M) λ .λ̄M ′.
open∗ (decode M1) λ .λ̄M ′1.
open∗ (decode M2) λ .λ̄M ′2.
open∗ (decode M3) λ .λ̄M ′3.
open∗ (decode M4) λ .λ̄M ′4.
open∗ (decode M5) λ .λ̄M ′5.
open∗ (decode M6) λ .λ̄M ′6.
open∗ (decode M7) λ .λ̄M ′7.

λd.(M : M ′1 M
′
2 M

′
3 M

′
4 M

′
5 M

′
6 M

′
7)))

I I I I I I I I)

Figure 9: Mogensen-Scott Decoding and Its Implementation in Archon
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encoding of λ̄x.x is

λV L A O C S D.L false λ̄x.λV L A O C S D.V x

If decode is called on this term, the code in the second case of Figure 9 tells us
first to open the λx and recursively decode the body (decode F ′). This gives us
just x, frozen beneath a dummy lambda abstraction. When the open expression
finishes, we thus have λ̄x.λd.x. To finish decoding the lambda abstraction, we
need to pull the λd out from beneath the λ̄x. This is done (by the code in the
second case) using swap, which yields λd.λ̄x.x, as desired.

In all the other cases, a combination of open and call-by-name abstraction is
used to move live code from under dummy abstractions and reassemble that code
under a new dummy abstraction. Since open always replaces the bound variable
(in this case, a now unused dummy), it is necessary to apply the resulting term to
several arbitrary terms (here, I) to eliminate the unused dummies. Correctness
of the implementation can be expressed as follows:

Theorem 4 For all terms T , decode pTq ⇓ λd.T .

9 Implementation

As pointed out by Wand, in any language where α-equivalence of program terms
coincides with contextual equivalence of their encodings, compilation steps like
source-to-source optimization are rendered unsound. Sound, efficient imple-
mentation of structurally reflective languages like Archon is thus a non-trivial
issue. It is not an insuperable one, however. For example, source-to-source
optimization could be allowed for programs which are not analyzed reflectively,
as determined by a static analysis. Furthermore, while source-to-source opti-
mization is unsound in general, it may still be possible to design more efficient
abstract machines for Archon, incorporating optimizations to the entire oper-
ational semantics. Exploring these ideas must remain to future work.

This section discusses initial efforts at an graph-reducing interpreter. Ap-
proaches based on compilation to an abstract machine result in large perfor-
mance gains over interpretation, and are considered necessary for serious im-
plementation. Nevertheless, interpretation is the appropriate starting point for
a language with novel constructs like Archon’s (cf. [19]). The prototype Ar-
chon interpreter is written in just under 1000 lines of Java, version 1.4.2. It
may be downloaded from http://cl.cse.wustl.edu/archon/, together with
all the examples considered in this paper. Since Java source code may be com-
piled to native code using the gcj compiler, we obtain a reasonably efficient
executable. The use of a garbage-collected language eliminates the burden of
implementing garbage collection in the interpreter. For this reason, functional
languages are also a good choice for implementation of Archon.

To reduce a β-redex, a pointer (which we will call the assigned variable
pointer) is set from the in-memory representation of the bound variable to the
argument value. Most of the computation time in graph reduction is consumed
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copying lambda abstractions. Lambda abstractions must be copied, in order
to avoid setting the same assigned variable pointer in two different ways for
two different applications. We will call the operation of duplicating lambda
expressions cloning. The Archon interpreter uses three optimizations to reduce
the amount and cost of cloning:

1. Do not clone lambda abstractions the first time they are applied in a
β-reduction. Only clone them for reductions after the first one.

2. Clone lambda abstractions only when following an assigned variable pointer.
This is justified because the only point in which sharing is introduced to
the term graph is when the assigned variable pointer is set from a variable
which is used more than once.

3. Avoid following assigned variable pointers during cloning.

Optimization 1 is easy to implement: one just sets a flag on the in-memory
(possibly shared) representation of a lambda abstraction, after the first β-
reduction in which it is applied. If another application of that lambda abstrac-
tion is β-reduced later, the abstraction must be cloned. Optimization 3 requires
more care to implement soundly. When a lambda abstraction binding variable
x is cloned, we set the assigned variable pointer to point to the new variable
(call it x′) which the cloned abstraction will contain. When we encounter a use
of any variable y during cloning, we thus should replace it with the expression
e that its assigned variable pointer points to, if that expression e is a variable.
If e is not a variable, we need not replace y with e. We can dereference the
pointer later, if we ever need to. The only issue is that we must be sure that
no occurrence of the bound variable x we are currently cloning occurs in e (for
then, failing to dereference y will leave behind occurrences of x which should
have been replaced with x′). An occurrence of a bound variable in e pointed to
by y can arise only during evaluation of an open expression, when a β-reduction
operating on an open term may cause e to get assigned to y. Hence, for sound-
ness of optimization 3, it is sufficient to dereference all assigned variables in the
results of computation of open expressions. This is implemented in Archon
simply by running through such a result after evaluation of an open expression
finishes, and dereferencing all assigned variable pointers.

9.1 Effect of the Optimizations

Figure 10 shows the effect of two of the three cloning optimizations discussed
above, on two benchmarks. The eq.a benchmark evaluates “eq eq eq”, where
eq is the term defined in Section 8.2 testing α-equivalence of two input terms.
In this case, the benchmark is testing whether eq is α-equivalent to itself (it
is, of course). The second benchmark is computing factorial of the number
6, expressed as a Scott-encoded unary number. All times are the averages of
times for three runs of the same benchmark. The machine used has an 800
MHz Intel Pentium III processor with 512 MB main memory and 512 KB

30



Benchmark −1− 3 −1 + 3 +1− 3 +1 + 3
eq.a 53.1 (118,586) 6.8 (202,888) 9.1 (32,690) 3.4 (90,113)
fact.a 7.2 (6,563) 0.3 (13,118) 0.2 (1,639) 0.2 (4,102)

Figure 10: Effect of Optimizations on Running Time (Times in Seconds)

cache. The version of gcj used is 3.4.4. A “+1” or “−1” in the heading
indicates whether optimization 1 of the previous Section is enabled or disabled,
respectively (similarly for “+3” and “−3”). Optimization 2 is not easy to disable
in the implementation, and so its effect is not measured here.

The eq.a benchmark takes 295,146 β-reductions for Archon to evaluate,
and fact.a take 12,381. The number of times an expression is cloned is given
in Figure 10 in parentheses. Note that with optimization 3 turned off, there are
fewer clonings, because each cloning does more work (by following all assigned
variable pointers).

9.2 Comparison with Other Interpreters

We compare Archon with the ghci interpreter that ships as part of the Glas-
gow Haskell Compiler (GHC), and also with the MzScheme interpreter,
that ships with the DrScheme programming environment [47, 46]. Not sur-
prisingly for tools that have been under development for many years, these
interpreters are much faster than the Archon interpreter. Nevertheless, the
gap is not as huge as one might expect.

The simple benchmark used is squaring the factorial of 5 (as a Scott-encoded
unary number). Thanks to its support for higher-rank polymorphism and re-
cursive types, GHC can type check code operating on Scott-encoded numbers.
Scheme is untyped, and hence easily supports Scott-encoded data. The Ar-
chon, Haskell, and Scheme programs for this benchmark are given in the
Appendix. Note that the implementation of multiplication and factorial used
in all three languages is deliberately inefficient: the usual, more efficient im-
plementations of both functions pass their arguments to their recursive calls
in the opposite order to the one used here. (The version of factorial used for
the benchmarks in Section 9.1 is the more efficient one.) The deliberate ineffi-
ciency is introduced to get a benchmark that takes long enough for ghci and
MzScheme to evaluate, without causing the Archon implementation to take
too long to complete. The machine used for this experiment has a 1.2 GHz Intel
Core Duo processor with 1.5 GB main memory and a 2 MB cache. Even though
both MzScheme and GHC ship with compilation capabilities, we deliberately
compare only with their interpreters. The benchmark takes 28.9 seconds to eval-
uate with Archon, 2.5 seconds with ghci version 6.6.1, and 3.6 seconds with
MzScheme version v371, with just-in-time compilation off. So we see Archon
is around an order of magnitude slower than the other interpreters.

31



10 Conclusion

This paper has defined the Archon directly reflective meta-programming lan-
guage. This language satisfies a number of desirable properties, including pu-
rity and scope safety. Programs are encoded using higher-order abstract syntax
(since they are trivially encoded as themselves). Archon is also suitable for
code-generating meta-programs. The language extends untyped lambda calcu-
lus with call-by-value and call-by-name abstractions, as well as novel reflective
features for swapping consecutive nested lambda binders, opening lambda ab-
stractions to compute on their bodies, comparing free variables, and decompos-
ing arbitrary program terms. An optimized interpreter has also been presented.
As we have seen, Archon is substantially closer to completeness than Wand’s
system, in which code-generating meta-programs are not (in any direct way)
generally implementable. Whether or not the proposed language is actually
complete is left open.
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[38] C. Schürmann, A. Poswolsky, and J. Sarnat. The ∇-Calculus. Functional
Programming with Higher-Order Encodings. In Proceedings of the 7th In-
ternational Conference on Typed Lambda Calculi and Applications, pages
339–353. Springer-Verlag, 2005.

[39] J. Seldin and J. Hindley, editors. To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism. Academic Press, 1980.

[40] J. Siskind and B. Pearlmutter. First-Class Nonstandard Interpretations
by Opening Closures. In Proceedings of the Symposium on Principles of
Programming Languages (POPL), 2007.

[41] B. Smith. Reflection and Semantics in LISP. In Proceedings of the 11th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 23–35, 1984.

[42] G. Steele. Common LISP: the Language (2nd ed.). Digital Press, 1990.

[43] B. Stroustrup. The C++ Programming Language (3rd Edition). Addison-
Wesley, 1997.

[44] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD
thesis, Oregon Graduate Institute, November 1999.

[45] The Coq Development Team. The Coq Proof Assistant Reference Manual,
Version V8.0, 2004. http://coq.inria.fr.

[46] The GHC Team. The Glorious Glasgow Haskell Compilation System
User’s Guide, Version 6.6.1, 2007. http://www.haskell.org/ghc/docs/
latest/html/users_guide/.

[47] The PLT Group. PLT DrScheme: Programming Environment Manual,
2007. http://download.plt-scheme.org/doc/drscheme/.

[48] P. Wadler. Theorems for free! In 4th International Conference on Func-
tional Programming and Computer Architecture, 1989.

[49] C. Wadsworth. Some Unusual λ-Calculus Numeral Systems, pages 215–230.
In Seldin and Hindley [39], 1980.

[50] M. Wand. The Theory of Fexprs is Trivial. Lisp and Symbolic Computation,
10(3):189–199, 1998.

35



[51] E. Westbrook. Free variable types. In Seventh Symposium on Trends in
Functional Programming (TFP 06), April 2006.

[52] A. Wright and R. Cartwright. A Practical Soft Type System for Scheme.
ACM Trans. Program. Lang. Syst., 19(1):87–152, 1997.

36



A Haskell Code for the Factorial Benchmark

The type of Scott-encoded unary numbers may be considered to be

µN. (∀b. (N → b) → b → b) → N

That is, it is a recursive type created from a functional accepting a continuation
for successor (of type N → b) and a continuation for zero (of type b), and com-
puting a value. We can define this recursive type in Haskell with higher-rank
polymorphism. Zero and successor numbers are then created from particular
functionals. Case analysis is implemented (“use” below) simply by extracting
the functional and applying it to the branches of the case.

module Ns where

data N = Mk (forall b . (N -> b) -> b -> b)
nz = Mk (\ s z -> z)
ns = \ n -> Mk (\ s z -> s n)
use = \ n s z -> case n of { Mk f -> f s z }

plus = \ n m -> use n (\p -> plus p (ns m)) m
mult = \ n m -> use n (\p -> plus (mult p m) m) nz
fact = \ n -> use n (\p -> mult n (fact p)) (ns nz)

showN :: N -> String
showN = \ n -> use n (\ p -> ("S "++(showN p))) "Z"
instance Show N where
show = showN

test0 = fact (ns (ns (ns (ns (ns nz)))))

test = mult test0 test0
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B Archon Code for the Factorial Benchmark

Note that the prototype Archon implementation uses “ˆ ” for λ̄ and “\” for λ.
Also, to allow simple recursive descent parsing, application is written explicitly,
in prefix notation, with “@”. Finally “$ x T1 T2” means that we define x to be
the value of T1 in T2. Arguments in applications are sometimes printed directly
below the corresponding “@” symbol.

$ zero ^ s ^ z z
$ succ \ n ^ s ^ z @ s n
$ one @ succ zero
$ fix \f @ \x @ f \y @ @ x x y

\x @ f \y @ @ x x y
$ plus @ fix \ plus \ n \ m @ @ n ^ p @ @ plus p

@ succ m
m

$ mult @ fix \ mult \ n \ m @ @ n ^ p @ @ plus @ @ mult p m m
zero

$ fact @ fix \ fact \ n @ @ n ^ p @ @ mult n @ fact p
one

$ show @ fix \ show \ n @ @ n ^ p @ S @ show p
Z

$ test0 @ fact @ succ @ succ @ succ @ succ @ succ zero

@ show @ @ mult test0 test0
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C Scheme Code for the Factorial Benchmark

(define (nz)
(lambda (s z) z))

(define (ns n)
(lambda (s z) (s n)))

(define (nat-to-string n)
(n (lambda (n) (string-append "S " (nat-to-string n))) "Z"))

(define (plus n m)
(n (lambda (p) (plus p (ns m))) m))

(define (mult n m)
(n (lambda (p) (plus (mult p m) m)) (nz)))

(define (fact n)
(n (lambda (p) (mult (fact p) n)) (ns (nz))))

(define (test0)
(fact (ns (ns (ns (ns (ns (nz))))))))

(define (test)
(let ((x (test0))) (mult x x)))

(define (main argv)
(print (nat-to-string (test))))
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